Real‐time reference‐free breathing crack identification using ambient vibration data

Author(s):  
J. Prawin
2020 ◽  
Vol 20 (13) ◽  
pp. 2041001
Author(s):  
Xin Wang ◽  
Nan Wu ◽  
Quan Wang

In this research, the frequency comparison function (FCF) method is proposed and studied to realize high-sensitive real-time crack identification at the welding joint area for a beam-type structure. This method is derived from the frequency response function (FRF). During FCF, we use the response signal collected from the designated point of the structure instead of the excitation. The standard deviation of the FCF amplitude curve is calculated to detect and evaluate the possible crack and its induced vibration perturbations afterward. Vibration responses are simulated in ANSYS by the use of the finite element analysis of a welded beam structure, and these signals are then analyzed with the FCF algorithm. It is concluded that FCF is an efficient method for breathing crack identification and can be easily applied under different excitation conditions, including harmonic and random ones. Meanwhile, FCF can be applied without any pre-processing algorithms such as filtering and smoothing. So, it can be used for real-time crack identification. By combining the FCF with the smart coating sensor composed of piezoelectric layers, the crack identification with high sensitivity is realized. The crack is detectable at its very early stage (starting from 3% of the beam thickness). Experimental studies under harmonic and random excitations are processed, and the results prove high sensitivity and feasibility of the proposed crack detection method.


2021 ◽  
pp. 100705
Author(s):  
Kimmie de Bruin ◽  
Max Dahele ◽  
Hassan Mostafavi ◽  
Berend Slotman ◽  
Wilko Verbakel

2021 ◽  
Author(s):  
Hyeondeok Jeong ◽  
Jungwon Yu ◽  
Youngjae Lee ◽  
Sung-min Lee ◽  
Sung-Soo Ryu ◽  
...  

Abstract The characteristics of an internal slurry were analyzed during ball milling, which is commonly utilized in ceramic processing. We used a device with a capacity of 50 L because this is the size employed in industries, and built a circulation system to collect the slurry during the milling process. The properties of the slurry were characterized in terms of their particle size and viscosity, while vibration data were collected from the side of the ball mill drum in real time. A fast Fourier transform was performed on the vibration data, allowing the energy to be calculated and compared with the slurry characteristics. The vibration data in the 3–4 kHz range showed a strong negative correlation with the slurry viscosity. Our results confirm that the characteristics of the internal slurry can be monitored in real time using vibration data collected during ball milling.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3135 ◽  
Author(s):  
Ying Wang ◽  
Wensheng Lu ◽  
Kaoshan Dai ◽  
Miaomiao Yuan ◽  
Shen-En Chen

When constructed on tall building rooftops, the vertical axis wind turbine (VAWT) has the potential of power generation in highly urbanized areas. In this paper, the ambient dynamic responses of a rooftop VAWT were investigated. The dynamic analysis was based on ambient measurements of the structural vibration of the VAWT (including the supporting structure), which resides on the top of a 24-story building. To help process the ambient vibration data, an automated algorithm based on stochastic subspace identification (SSI) with a fast clustering procedure was developed. The algorithm was applied to the vibration data for mode identification, and the results indicate interesting modal responses that may be affected by the building vibration, which have significant implications for the condition monitoring strategy for the VAWT. The environmental effects on the ambient vibration data were also investigated. It was found that the blade rotation speed contributes the most to the vibration responses.


2008 ◽  
pp. n/a-n/a ◽  
Author(s):  
Michele Frizzarin ◽  
Maria Q. Feng ◽  
Paolo Franchetti ◽  
Serdar Soyoz ◽  
Claudio Modena

Sign in / Sign up

Export Citation Format

Share Document