scholarly journals Nuclear Transfer-Derived Epiblast Stem Cells Are Transcriptionally and Epigenetically Distinguishable from Their Fertilized-Derived Counterparts

Stem Cells ◽  
2010 ◽  
Vol 28 (4) ◽  
pp. 743-752 ◽  
Author(s):  
Julien Maruotti ◽  
Xiang Peng Dai ◽  
Vincent Brochard ◽  
Luc Jouneau ◽  
Jun Liu ◽  
...  
Cell Research ◽  
2021 ◽  
Author(s):  
Xiaoxiao Wang ◽  
Yunlong Xiang ◽  
Yang Yu ◽  
Ran Wang ◽  
Yu Zhang ◽  
...  

AbstractThe pluripotency of mammalian early and late epiblast could be recapitulated by naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naïve ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Birbal Singh ◽  
Gorakh Mal ◽  
Vinod Verma ◽  
Ruchi Tiwari ◽  
Muhammad Imran Khan ◽  
...  

Abstract Background The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. Main body Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. Conclusions The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.


2015 ◽  
Vol 17 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Sergio D. German ◽  
Keith H.S. Campbell ◽  
Elisabeth Thornton ◽  
Gerry McLachlan ◽  
Dylan Sweetman ◽  
...  

2005 ◽  
Vol 7 (4) ◽  
pp. 265-271 ◽  
Author(s):  
Danièle Pralong ◽  
Krzysztof Mrozik ◽  
Filomena Occhiodoro ◽  
Nishanthi Wijesundara ◽  
Huseyin Sumer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document