direct reprogramming
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 103)

H-INDEX

49
(FIVE YEARS 6)

2021 ◽  
Vol 16 ◽  
Author(s):  
Tomoaki Ishida ◽  
Tomoe Ueyama ◽  
Ai Baba ◽  
Koji Hasegawa ◽  
Teruhisa Kawamura
Keyword(s):  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3297
Author(s):  
Liu Liu ◽  
Yijing Guo ◽  
Zhaokai Li ◽  
Zhong Wang

Direct reprogramming of fibroblasts into CM-like cells has emerged as an attractive strategy to generate induced CMs (iCMs) in heart regeneration. However, low conversion rate, poor purity, and the lack of precise conversion of iCMs are still present as significant challenges. In this review, we summarize the recent development in understanding the molecular mechanisms of cardiac reprogramming with various strategies to achieve more efficient iCMs. reprogramming. Specifically, we focus on the identified critical roles of transcriptional regulation, epigenetic modification, signaling pathways from the cellular microenvironment, and cell cycling regulation in cardiac reprogramming. We also discuss the progress in delivery system optimization and cardiac reprogramming in human cells related to preclinical applications. We anticipate that this will translate cardiac reprogramming-based heart therapy into clinical applications. In addition to optimizing the cardiogenesis related transcriptional regulation and signaling pathways, an important strategy is to modulate the pathological microenvironment associated with heart injury, including inflammation, pro-fibrotic signaling pathways, and the mechanical properties of the damaged myocardium. We are optimistic that cardiac reprogramming will provide a powerful therapy in heart regenerative medicine.


Author(s):  
Boxun Li ◽  
Gary C. Hon

As we near a complete catalog of mammalian cell types, the capability to engineer specific cell types on demand would transform biomedical research and regenerative medicine. However, the current pace of discovering new cell types far outstrips our ability to engineer them. One attractive strategy for cellular engineering is direct reprogramming, where induction of specific transcription factor (TF) cocktails orchestrates cell state transitions. Here, we review the foundational studies of TF-mediated reprogramming in the context of a general framework for cell fate engineering, which consists of: discovering new reprogramming cocktails, assessing engineered cells, and revealing molecular mechanisms. Traditional bulk reprogramming methods established a strong foundation for TF-mediated reprogramming, but were limited by their small scale and difficulty resolving cellular heterogeneity. Recently, single-cell technologies have overcome these challenges to rapidly accelerate progress in cell fate engineering. In the next decade, we anticipate that these tools will enable unprecedented control of cell state.


2021 ◽  
Author(s):  
Yuji Atsuta ◽  
Changhee Lee ◽  
Alan R. Rodrigues ◽  
Charlotte Colle ◽  
Reiko R. Tomizawa ◽  
...  

SUMMARYThe early limb bud consists of mesenchymal progenitors (limb progenitors) derived from the lateral plate mesoderm (LPM) that produce most of the tissues of the mature limb bud. The LPM also gives rise to the mesodermal components of the trunk, flank and neck. However, the mesenchymal cells generated at these other axial levels cannot produce the variety of cell types found in the limb bud, nor can they be directed to form a patterned appendage-like structure, even when placed in the context of the signals responsible for organizing the limb bud. Here, by taking advantage of a direct reprogramming approach, we find a set of factors (Prdm16, Zbtb16, and Lin28) normally expressed in the early limb bud, that are capable of imparting limb progenitor-like properties to non-limb fibroblasts. Cells reprogrammed by these factors show similar gene expression profiles, and can differentiate into similar cell types, as endogenous limb progenitors. The further addition of Lin41 potentiates proliferation of the reprogrammed cells while suppressing differentiation. These results suggest that these same four key factors may play pivotal roles in the specification of endogenous limb progenitors.


2021 ◽  
Vol 13 ◽  
Author(s):  
Fabin Han ◽  
Yanming Liu ◽  
Jin Huang ◽  
Xiaoping Zhang ◽  
Chuanfei Wei

Parkinson’s disease is mainly caused by specific degeneration of dopaminergic neurons (DA neurons) in the substantia nigra of the middle brain. Over the past two decades, transplantation of neural stem cells (NSCs) from fetal brain-derived neural stem cells (fNSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs) has been shown to improve the symptoms of motor dysfunction in Parkinson’s disease (PD) animal models and PD patients significantly. However, there are ethical concerns with fNSCs and hESCs and there is an issue of rejection by the immune system, and the iPSCs may involve tumorigenicity caused by the integration of the transgenes. Recent studies have shown that somatic fibroblasts can be directly reprogrammed to NSCs, neurons, and specific dopamine neurons. Directly induced neurons (iN) or induced DA neurons (iDANs) from somatic fibroblasts have several advantages over iPSC cells. The neurons produced by direct transdifferentiation do not pass through a pluripotent state. Therefore, direct reprogramming can generate patient-specific cells, and it can overcome the safety problems of rejection by the immune system and teratoma formation related to hESCs and iPSCs. However, there are some critical issues such as the low efficiency of direct reprogramming, biological functions, and risks from the directly converted neurons, which hinder their clinical applications. Here, the recent progress in methods, mechanisms, and future challenges of directly reprogramming somatic fibroblasts into neurons or dopamine neurons were summarized to speed up the clinical translation of these directly converted neural cells to treat PD and other neurodegenerative diseases.


2021 ◽  
Author(s):  
Danielle Karo-Atar ◽  
Shaida Ouladan ◽  
Tanvi Javkar ◽  
Loick Joumier ◽  
Macy K Matheson ◽  
...  

Enteric helminths form intimate physical connections with the intestinal epithelium, yet their ability to directly alter epithelial stem cell fate has not been resolved. Here we demonstrate that infection of mice with the symbiotic parasite Heligmosomoides polygyrus bakeri (Hbp), reprograms the intestinal epithelium into a fetal-like state marked by the emergence of Clusterin-expressing revival stem cells (revSCs). Organoid-based studies using parasite-derived excretory/secretory products reveal that Hpb-mediated revSC generation occurs independent of host-derived immune signals and inhibits type 2 cytokine-driven differentiation of secretory epithelial lineages that promote their expulsion. Reciprocally, type 2 cytokine signals limit revSC differentiation and, consequently, Hpb fitness indicating that helminths compete with their host for control of the intestinal stem cell niche to promote continuation of their life cycle.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Glynnis A Garry ◽  
Svetlana Bezprozvannaya ◽  
Huanyu Zhou ◽  
Hisayuki Hashimoto ◽  
Kenian Chen ◽  
...  

Ischemic heart disease is the leading cause of death worldwide. Direct reprogramming of resident cardiac fibroblasts (CFs) to induced cardiomyocytes (iCLMs) has emerged as a potential therapeutic approach to treat heart failure and ischemic disease. Cardiac reprogramming was first achieved through forced expression of the transcription factors Gata4, Mef2c, and Tbx5 (GMT); our laboratory found that Hand2 (GHMT) and Akt1 (AGHMT) markedly enhanced reprogramming efficiency in embryonic and postnatal cell types. However, adult mouse and human fibroblasts are resistant to reprogramming due to staunch epigenetic barriers. We undertook a screen of mammalian gene regulatory factors to discover novel regulators of cardiac reprogramming in adult fibroblasts and identified the epigenetic reader PHF7 as the most potent activating factor. We validated the findings of this screen and found that PHF7 augmented reprogramming of adult fibroblasts ten-fold. Mechanistically, PHF7 localized to cardiac super enhancers in fibroblasts by reading H3K4me2 marks, and through cooperation with the SWI/SNF complex, increased chromatin accessibility and transcription factor binding at these multivalent enhancers. Further, PHF7 recruited cardiac transcription factors to activate a positive transcriptional autoregulatory circuit in reprogramming. Importantly, PHF7 achieved efficient reprogramming through these mechanisms in the absence of Gata4. Collectively, these studies highlight the underexplored necessity of cardiac epigenetic readers, such as PHF7, in harnessing chromatin remodeling and transcriptional complexes to overcome critical barriers to direct cardiac reprogramming.


Sign in / Sign up

Export Citation Format

Share Document