scholarly journals Application of fiber optic measurement in textile‐reinforced concrete testing

2021 ◽  
Author(s):  
Henrik Becks ◽  
Jan Bielak ◽  
Benjamin Camps ◽  
Josef Hegger
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4948
Author(s):  
Lourdes S. M. Alwis ◽  
Kort Bremer ◽  
Bernhard Roth

The last decade has seen rapid developments in the areas of carbon fiber technology, additive manufacturing technology, sensor engineering, i.e., wearables, and new structural reinforcement techniques. These developments, although from different areas, have collectively paved way for concrete structures with non-corrosive reinforcement and in-built sensors. Therefore, the purpose of this effort is to bridge the gap between civil engineering and sensor engineering communities through an overview on the up-to-date technological advances in both sectors, with a special focus on textile reinforced concrete embedded with fiber optic sensors. The introduction section highlights the importance of reducing the carbon footprint resulting from the building industry and how this could be effectively achieved by the use of state-of-the-art reinforcement techniques. Added to these benefits would be the implementations on infrastructure monitoring for the safe operation of structures through their entire lifespan by utilizing sensors, specifically, fiber optic sensors. The paper presents an extensive description on fiber optic sensor engineering that enables the incorporation of sensors into the reinforcement mechanism of a structure at its manufacturing stage, enabling effective monitoring and a wider range of capabilities when compared to conventional means of structural health monitoring. In future, these developments, when combined with artificial intelligence concepts, will lead to distributed sensor networks for smart monitoring applications, particularly enabling such distributed networks to be implemented/embedded at their manufacturing stage.


2021 ◽  
pp. 747-759
Author(s):  
Paolo Corvaglia ◽  
Eriselda Lirza ◽  
Michael Brancato ◽  
Marco Nucci ◽  
Vincent Lanticq

2021 ◽  
Vol 301 ◽  
pp. 124300
Author(s):  
Dimas Alan Strauss Rambo ◽  
Caroline Umbinger de Oliveira ◽  
Renan Pícolo Salvador ◽  
Romildo Dias Toledo Filho ◽  
Otávio da Fonseca Martins Gomes ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2127
Author(s):  
Richard Fürst ◽  
Eliška Fürst ◽  
Tomáš Vlach ◽  
Jakub Řepka ◽  
Marek Pokorný ◽  
...  

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.


Sign in / Sign up

Export Citation Format

Share Document