Influence of seismicity level and height of the building on progressive collapse resistance of steel frames

2016 ◽  
Vol 26 (2) ◽  
pp. e1305 ◽  
Author(s):  
B. Kordbagh ◽  
M. Mohammadi
2016 ◽  
Vol 7 (4) ◽  
pp. 518-546
Author(s):  
Milan Bandyopadhyay ◽  
Atul Krishna Banik

Progressive collapse studies of both unbraced and braced semi-rigid jointed steel frames have been carried out to evaluate the contribution of bracings in improving progressive collapse resistance potential. Numerical models of 10-story frames with different types of semi-rigid connections have been developed using SAP2000. Progressive collapse potential of semi-rigid frames is first investigated without bracings. Bracings are then included in a systematic manner, and response of the braced frame is compared with that of unbraced frame to evaluate the contribution of bracings. Two different arrangements of bracings, that is, bay-wise and floor-wise arrangements, are considered to find out a preferred arrangement of bracings. Parametric studies include eight column removal conditions at center and corner locations of different floors. Development of catenary action has also been considered as it gives additional resistance, especially to braced frame. Apart from nonlinear static analysis, effects of bracings are evaluated also through nonlinear dynamic analysis and the responses of the frames in nonlinear dynamic analysis are compared with those of nonlinear static analysis. From the study, it is found that provision of bracings significantly improves the progressive collapse resistance potential of the semi-rigid frames under different column removal conditions. Floor-wise arrangement of bracings is much effective as compared to bay-wise arrangement.


2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


2021 ◽  
Vol 1777 (1) ◽  
pp. 012037
Author(s):  
R Han ◽  
T Y Yin ◽  
X D Yang ◽  
Y Zhang ◽  
Y S Zhang ◽  
...  

2021 ◽  
Vol 38 ◽  
pp. 102228
Author(s):  
Gianrocco Mucedero ◽  
Emanuele Brunesi ◽  
Fulvio Parisi

2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


2021 ◽  
pp. 103123
Author(s):  
Hua Huang ◽  
Min Huang ◽  
Wei Zhang ◽  
Mengxue Guo ◽  
Zhen Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document