column removal scenario
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 50)

H-INDEX

18
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7157
Author(s):  
Jin Xu ◽  
Sheliang Wang ◽  
Kangning Liu ◽  
Xiaoyi Quan ◽  
Fangfei Dong

The progressive collapse of buildings induces a variety of catastrophic consequences, such as casualties and property loss over the past few decades. The corner column is more prone to abnormal load events compared to the inner column and outer column; thus, it is easier to trigger progressive collapse. By considering the effects of floor slabs and adjacent bays on progressive collapse behavior, the pseudo-static loading method was used to study the progressive collapse test of a 1/3 scaled, one story, 2 × 2-bay cast-in-place reinforced concrete frame substructure under the removal condition of a corner column. The test results show that the flexural deformation principally concentrates upon the components of a directly affected part (DAP), and compressive arch actions are observed in members of the indirectly affected part (IAP). Moreover, the slab adjacent to the removed column and periphery elements contributes great resistance to a progressive collapse.


2021 ◽  
Vol 11 (16) ◽  
pp. 7492
Author(s):  
Luchuan Ding ◽  
Ruben Van Coile ◽  
Wouter Botte ◽  
Robby Caspeele

The alternative load path method is widely used to assess the progressive collapse performance of reinforced concrete structures. As an alternative to an accurate non–linear dynamic analysis, an energy–based method (EBM) can also be adopted to approximately calculate the dynamic load–bearing capacity curve or the dynamic resistance based on a static capacity curve. However, dynamic effects cannot be explicitly taken into account in the EBM. The model uncertainty associated with the use of the EBM for evaluating the dynamic ultimate capacity of structural frames has not yet been quantified. Knowledge of this model uncertainty is however necessary when applying EBM as part of reliability calculations, for example, in relation to structural robustness quantification. Hence, this article focuses on the evaluation of the performance of the EBM and the quantification of its model uncertainty in the context of reliability–based assessments of progressive or disproportionate collapse. The influences of damping effects and different column removal scenarios are investigated. As a result, it is found that damping effects have a limited influence on the performance of the EBM. In the case of an external column removal scenario, the performance of the EBM is lower as the response is not a single deformation mode according to the results in the frequency domain. However, a good performance is found in the case of an internal column removal scenario in which the assumption of a single deformation mode is found to be sufficiently adequate. Probabilistic models for the model uncertainties related to the use of the EBM compared to direct dynamic analyses are proposed in relation to both the resistances and the associated displacements. Overall, the EBM shows to be an adequate approximation, resulting in a small bias and small standard deviation for its associated model uncertainty.


Sign in / Sign up

Export Citation Format

Share Document