fe modelling
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 110)

H-INDEX

24
(FIVE YEARS 4)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Chunping Zhang ◽  
Abdelhalim Loucif ◽  
Mohammad Jahazi ◽  
Jean-Benoit Morin

In the present work, the influence of filling rate on macrosegregation in a 40-Metric Ton (MT) ingot of a high-strength low-carbon steel was studied using finite element (FE) simulation. The modelling of the filling and solidification processes were realized with a two-phase (liquid-solid) multiscale 3D model. The liquid flow induced by the pouring jet, the thermosolutal convection, and the thermomechanical deformation of the solid phase were taken into consideration. Two filling rates were examined, representing the upper and lower manufacturing limits for casting of large size ingots made of high strength steels for applications in energy and transportation industries. The evolution of solute transport, as well as its associated phenomena throughout the filling and cooling stages, were also investigated. It was found that increasing the filling rate reduced macrosegregation intensity in the upper section, along the centerline and in the mid-radius regions of the ingot. The results were analyzed in the framework of heat and mass transfer theories, liquid flow dynamics, and macrosegregation formation mechanisms.


2021 ◽  
Vol 12 (1) ◽  
pp. 166
Author(s):  
Per Gunnvard ◽  
Hans Mattsson ◽  
Jan Laue

Three-dimensional finite element (FE) simulations were performed to further develop the Swedish design guidelines for geogrid-reinforced timber pile-supported embankments, also known as lightly piled embankments. Lightly piled embankments are constructed mainly in areas which typically have highly compressible soils, and the method utilises untreated timber piles as its key feature. The timber piles are installed in a triangular arrangement instead of the more common square arrangement, with a centre-to-centre distance of 0.8–1.2 m. The aim of this study was to evaluate the current standard using FE modelling setups with square and triangular pile arrangements with varying centre-to-centre distances, based on a typical road foundation case. The evaluation mainly focused on comparing the embankment settlements, as well as the load and stress distribution in the embankment, the piles and the geosynthetic reinforcement. As part of the evaluation, a state-of-the-art study was done on international design guidelines and analytical models. From the FE simulations, no evident difference in mechanical behaviour was found between the triangular and square piling patterns. The maximum allowed centre-to-centre distance between piles can potentially be increased to 1.4 m, decreasing the number of piles by as much as one third.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Ali Rajaei ◽  
Yuanbin Deng ◽  
Oliver Schenk ◽  
Soheil Rooein ◽  
Alexander Bezold ◽  
...  

AbstractThis paper presents a digital model for the powder metallurgical (PM) production chain of high-performance sintered gears based on an integrated computational materials engineering (ICME) platform. Discrete and finite element methods (DEM and FEM) were combined to describe the macroscopic material response to the thermomechanical loads and process conditions during the entire production process. The microstructural evolution during the sintering process was predicted on the meso-scale using a Monte-Carlo Model. The effective elastic properties were determined by a homogenization method based on modelling a representative volume element (RVE). The results were subsequently used for the FE modelling of the heat treatment process. Through the development of multi-scale models, it was possible obtain characteristics of the microstructural features. The predicted hardness and residual stress distributions allowed the calculation of the tooth root load bearing capacity of the heat-treated sintered gears.


Author(s):  
Leqia He ◽  
Chiara Castoro ◽  
Angelo Aloisio ◽  
Zhiyong Zhang ◽  
Giuseppe C. Marano ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1372
Author(s):  
Afnan Nafees ◽  
Muhammad Faisal Javed ◽  
Muhammad Ali Musarat ◽  
Mujahid Ali ◽  
Fahid Aslam ◽  
...  

Reactive powder concrete (RPC) is used in the beam-column joint region in two out of four frames. Finite element modeling of all specimens is developed by using ABAQUS software. Displacement controlled analysis is used rather than load control analysis to obtain the actual response of the structure. The prepared models were verified by using experimental results. The results showed that using RPC in the joint region increased the overall strength of the structure by more than 10%. Moreover, it also helped in controlling the crack width. Furthermore, using RPC in the joint region increased the ductility of the structures. Comparisons were made by varying the size of the mesh and viscosity parameter values. It was found that by increasing the mesh size and viscosity parameter value, analysis time and the number of steps during analysis were reduced. This study provides a new modeling approach using RPC beam-column joint to predict the behavior and response of structures and to improve the shear strength deformation against different structural loading.


Author(s):  
Rajith Sudilan Dayarathne ◽  
Bipul C. Hawlader ◽  
Ryan Phillips ◽  
Dilan Robert

Coupled thermo-hydro-mechanical finite element (FE) modelling of thaw consolidation is presented. One-dimensional FE analyses are performed for thaw consolidation of a soil column due to self-weight and with a combination of self-weight and surcharge, with the linear and nonlinear void ratio–effective stress–hydraulic conductivity relationships of thawed soil. The nonlinear behaviour of thawed soil is modelled using a modified Drucker–Prager Cap model, while the hydraulic conductivity is varied with the void ratio. Finally, two-dimensional FE modelling of thaw consolidation around a warm pipeline buried in permafrost is performed. The rapid reduction of the void ratio with consolidation, especially at the low-stress level, results in a wide variation of hydraulic conductivity within the thawed zone. The significantly large hydraulic conductivity of soil elements along the curved thaw front, as compared to that of thaw consolidated soil, causes the flow of water along the thaw front, instead of a vertical flow, as assumed in previous 1-D thaw consolidation modelling of buried pipelines.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032056
Author(s):  
Ilinca-Florina Moldovan ◽  
Mihai Nedelcu ◽  
Stefan-Marius Buru

Abstract External bonding with CFRP (Carbon Fiber Reinforced Polymers) has been investigated over the last decade, as it represents a viable technique of strengthening existing prestressed concrete structures, including hollow-core slabs (HCS) with non-circular voids. The high performance of these carbon fibers has been validated through a large volume of experimental and numerical research and yet there are a few issues which remain controversial in simulating their behaviour with the finite element modelling. Although the CFRP mechanical properties are provided by the manufacturers, they are not satisfactory for a complete understanding of the analysis and design approach of HCS strengthened with CFRP. The present research is conducted on prestressed HCS with non-circular voids. The strengthening method consisted in the application of the composite material on the slab’s end internal regions of the voids, on a 500mm length: 1 layer and 2 layers. The objective of this study is to emphasize the effect of damage in the CFRP strips and moreover the interface effectiveness on the CFRP strengthened HCS. Damage is predicted using Hashin’s initiation criteria and the cohesive behaviour in the interface is used to analyse the epoxy resin which bonds the CFRP sheets to the hollow-core units. A plastic damage model was used for modelling the concrete, after a parametric study regarding the dilatancy angle and viscosity parameter was conducted for the most appropriate choice of concrete damage plasticity parameters. The overall procedure consists of numerical FE modelling in Abaqus software. Two different modelling possibilities of CFRP-to-concrete interface were studied: a tie constraint connection was first used and secondly the contact bonding was defined with the cohesive behaviour option of the contact interaction property. The results are provided in terms of load-displacement response, equivalent plastic strain and distribution of Von Misses stresses in the CFRP strips.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajitanshu Vedrtnam ◽  
Santosh Kumar ◽  
Gonzalo Barluenga ◽  
Shashikant Chaturvedi

AbstractThe present work reports an efficient way of capturing real-time crack propagation in concrete structures. The modified spectral analysis based algorithm and finite element modeling (FEM) were utilised for crack detection and quantitative analysis of crack propagation. Crack propagation was captured in cement-based composite (CBC) containing saw dust and M20 grade concrete under compressive loading using a simple and inexpensive 8-megapixel mobile phone camera. The randomly selected images showing crack initiation and propagation in CBCs demonstrated the crack capturing capability of developed algorithm. A measure of oriented energy was provided at crack edges to develop a similarity spatial relationship among the pairwise pixels. FE modelling was used for distress anticipation, by analysing stresses during the compressive test in constituents of CBCs. FE modeling jointly with the developed algorithm, can provide real-time inputs from the crack-prone areas and useful in early crack detection of concrete structures for preventive support and management.


Sign in / Sign up

Export Citation Format

Share Document