Seismic performance analysis of Wenchuan Hospital structure with viscous dampers

2010 ◽  
Vol 19 (4) ◽  
pp. 397-419 ◽  
Author(s):  
Xue-Wei Chen ◽  
Jia-Xuan Li ◽  
Jack Cheang





Author(s):  
Siyuan Li ◽  
Yung-Tsang Chen ◽  
Y. H. Chai ◽  
Bo Li

In the applications of supplemental dampers for seismic hazard mitigation, the supporting braces for the dampers are considered an important component for ensuring an efficient energy dissipation in the structure. Despite their importance, studies on the effects of the brace stiffness and the velocity exponent in the case of nonlinear viscous dampers are rather limited. In this paper, a numerical time-stepping method is developed for computing the seismic response of the structure with supporting braces and nonlinear viscous dampers. Using the proposed method, effects of the parameters of the nonlinear damper-brace systems are investigated, using first a single-story structure, followed by multi-story buildings. Results indicated that the design parameters for the dampers and supporting braces may be combined in numerous ways to satisfy a given set of structural performance objectives, but the brace stiffness can be minimized to achieve design efficiency in the range of velocity exponent commonly used for seismic applications of nonlinear viscous dampers. Results also indicated that for a set brace stiffness, if the dampers are optimally designed, the velocity exponent has an insignificant effect on the structural seismic performance objectives considered in this paper.



2018 ◽  
Vol 12 (05) ◽  
pp. 1850015 ◽  
Author(s):  
Wei Guo ◽  
Jianzhong Li ◽  
Nailiang Xiang

In this paper, a novel central buckle composed of buckling-restrained braces (BRBs) is developed for long-span suspension bridges, and its preliminary design procedure is presented. Seismic performance of suspension bridges equipped with BRB central buckles is investigated and compared with those with conventional central buckles (e.g. rigid or flexible central buckles). Furthermore, the effect of BRB yield force, as well as the effectiveness of BRB central buckles combined with viscous dampers, is evaluated using parametric analyses. The results indicate that the BRB central buckle is more effective than other central buckles in reducing both the longitudinal girder displacements and force demands on towers during an earthquake. Furthermore, the combination of BRB central buckles and viscous dampers is a superior option for mitigating the seismic response of long-span suspension bridges.







2021 ◽  
Author(s):  
Gaohui Wang ◽  
Wenbo Lu ◽  
Sherong Zhang


Sign in / Sign up

Export Citation Format

Share Document