fluid viscous dampers
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 46)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
S. P. Kotecha

Damping performs essential function in format of earthquake resistant structures, which lower the change of the shape when they are subjected to lateral loads or earthquake. In the existing study fluid viscous dampers (FVD) are used to consider the response of RCC buildings on sloping ground. The important challenge of a structure is to endure the lateral loads and switch them to the foundation and to control the story displacement. In order to make structure earthquake resistant, (FVD) have been used. The building is modeled in ETAB 2018 and modeled with different location of FVD. After the study results show building with fluid viscous dampers (FVD) at diagonal bracing shows better performance.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012046
Author(s):  
Lingala Ajay ◽  
M. Anil Kumar

Abstract Damping plays a major role in design of structures resistant to earthquakes. The damping reduces the effective of the structure when they are assigned to lateral loads by energy dissipation. The number of dampers is available and in use today. Most of the dampers usually isolate the super structure from the substructure, dividing them in order to hamper the flow of vibrations into the superstructure. This classification is termed as base isolation techniques. While, the rest of the damping techniques, dissipates the oncoming vibrations on the superstructure itself and minimizes the damage to the superstructure. In this present study, Fluid Viscous Dampers (FVD) are used extensively over types of dampers. The structure endures two load types, the vertical loads and the sidewise loads, and conveys to the foundation. In order to have earthquake resistant structures, FVD have been used. In the present study, Dissymmetric Buildings are analyzed with and without Fluid Viscous Dampers. The software ETABS 2016 was used. Using Time history analysis in ETABS software, the RC building is considered and the structure is evaluated and connect with and without FVD.


2021 ◽  
Vol 7 ◽  
Author(s):  
Michele Palermo ◽  
Vittoria Laghi ◽  
Giada Gasparini ◽  
Stefano Silvestri ◽  
Tomaso Trombetti

The paper investigates the dynamic behavior of structural systems obtained by connecting a moment-resisting frame structure with a vertical rigid truss pinned at the base, known in literature as “strongback,” and equipped with added fluid-viscous dampers. The strongback, designed in order to remain in the elastic field under strong seismic ground motion, acts as a mast by imposing to the structure a linear lateral deformed shape. By regularizing the lateral drift profile of the structure, the strongback limits undesired effects such as weak-storey mechanisms, damage concentration and residual drifts. In addition, when supplemental dampers are inserted in the structure, a considerable amount of energy can be dissipated, thus reducing the peak seismic response. The aim of the work is twofold: i) to provide analytical formulations for the preliminary design of added dampers based on the Generalized Single Degree Of Freedom (GSDOF) concept, and ii) to evaluate the increase in energy dissipation capabilities for selected dampers configurations thanks to the presence of the strongback. The formulas are developed for different configurations of added viscous dampers: dampers inserted within the frame between all or selected consecutive storeys (inter-storey placement) and dampers located at the base of the strongback to realize a rigid “dissipative tower.” The effectiveness of the dampers configurations is evaluated through dynamic time-history analyses.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Hytham Elwardany ◽  
Robert Jankowski ◽  
Ayman Seleemah

AbstractSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and nonlinear fluid viscous dampers to mitigate the mutual pounding between a series of structures is investigated. Nonlinear finite-element analysis of a series of adjacent steel buildings equipped with damping devices was conducted. Contact surfaces with both contactor and target were used to model the mutual pounding. The results indicate that the use of linear or nonlinear dampers leads to the significant reduction in the response of adjacent buildings in series. Moreover, the substantial improvement of the performance of buildings has been observed for almost all stories. From the design point of view, it is concluded that dampers implemented in adjacent buildings should be designed to resist maximum force of 6.20 or 1.90 times the design independent force in the case of using linear or nonlinear fluid viscous dampers, respectively. Also, designers should pay attention to the design of the structural elements surrounding dampers, because considerable forces due to pounding may occur in the dampers at the maximum displaced position of the structure.


Sign in / Sign up

Export Citation Format

Share Document