An efficient class association rule-pruning method for unified intrusion detection system using genetic algorithm

2013 ◽  
Vol 8 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Nannan Lu ◽  
Shingo Mabu ◽  
Tuo Wang ◽  
Kotaro Hirasawa
Author(s):  
Devaraju Sellappan ◽  
Ramakrishnan Srinivasan

Intrusion detection system (IDSs) are important to industries and organizations to solve the problems of networks, and various classifiers are used to classify the activity as malicious or normal. Today, the security has become a decisive part of any industrial and organizational information system. This chapter demonstrates an association rule-mining algorithm for detecting various network intrusions. The KDD dataset is used for experimentation. There are three input features classified as basic features, content features, and traffic features. There are several attacks are present in the dataset which are classified into Denial of Service (DoS), Probe, Remote to Local (R2L), and User to Root (U2R). The proposed method gives significant improvement in the detection rates compared with other methods. Association rule mining algorithm is proposed to evaluate the KDD dataset and dynamic data to improve the efficiency, reduce the false positive rate (FPR) and provides less time for processing.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1046 ◽  
Author(s):  
Omar Almomani

The network intrusion detection system (NIDS) aims to identify virulent action in a network. It aims to do that through investigating the traffic network behavior. The approaches of data mining and machine learning (ML) are extensively used in the NIDS to discover anomalies. Regarding feature selection, it plays a significant role in improving the performance of NIDSs. That is because anomaly detection employs a great number of features that require much time. Therefore, the feature selection approach affects the time needed to investigate the traffic behavior and improve the accuracy level. The researcher of the present study aimed to propose a feature selection model for NIDSs. This model is based on the particle swarm optimization (PSO), grey wolf optimizer (GWO), firefly optimization (FFA) and genetic algorithm (GA). The proposed model aims at improving the performance of NIDSs. The proposed model deploys wrapper-based methods with the GA, PSO, GWO and FFA algorithms for selecting features using Anaconda Python Open Source, and deploys filtering-based methods for the mutual information (MI) of the GA, PSO, GWO and FFA algorithms that produced 13 sets of rules. The features derived from the proposed model are evaluated based on the support vector machine (SVM) and J48 ML classifiers and the UNSW-NB15 dataset. Based on the experiment, Rule 13 (R13) reduces the features into 30 features. Rule 12 (R12) reduces the features into 13 features. Rule 13 and Rule 12 offer the best results in terms of F-measure, accuracy and sensitivity. The genetic algorithm (GA) shows good results in terms of True Positive Rate (TPR) and False Negative Rate (FNR). As for Rules 11, 9 and 8, they show good results in terms of False Positive Rate (FPR), while PSO shows good results in terms of precision and True Negative Rate (TNR). It was found that the intrusion detection system with fewer features will increase accuracy. The proposed feature selection model for NIDS is rule-based pattern recognition to discover computer network attack which is in the scope of Symmetry journal.


Sign in / Sign up

Export Citation Format

Share Document