class association rule
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 798-812
Author(s):  
Suhiar Mohammed Zeki Abd Alsammed

Cancer represents a kind of disease that is widespread throughout the world. Actually, there are several kinds of cancer. However, lung cancer represents the most prevalent cancer form and can lead to death with late healthcare. Therefore, it is essential to initialize therapy via diagnosing lung cancer for decreasing the death chance. Classification is one of the fundamental issues in the knowledge discovery fields and scientific decisions. There are many types of techniques used for constructing classifiers and cancer diagnosis. Recently, deep learning becomes a powerful and popular classification technique for many areas of medical data diagnosis in the healthcare systems. In this paper, an effective and accurate deep neural network (DNN) based lung cancer diagnosis implemented in the healthcare system has been proposed which includes three main phases; pre-processing, generating strong rules, and classification. The input data are pre-processed in the first phase. Because these data are entered from databases, so there are missing data that should be replaced with zero values. Then, data are normalized for speeding up the learning phase. After that, the class association rule is used to enhance the classification performance by generating frequent patterns inducible from the dataset which include features that are significant to the class attribute. Finally, DNN is utilized in the process of classification for obtaining a sample diagnosis estimate. DNN based diagnosis system was tested and evaluated on the lung cancer dataset which has 25 attributes and 1000 instances. The obtained results demonstrated that the proposed system achieved a high performance compared to other existing lung cancer diagnosis systems with 95% accuracy, 97% specificity, and 95% sensitivity.


2021 ◽  
Vol 164 ◽  
pp. 113978
Author(s):  
Mahmoud Nasr ◽  
Mohamed Hamdy ◽  
Doaa Hegazy ◽  
Khaled Bahnasy

2020 ◽  
Vol 10 (20) ◽  
pp. 7013
Author(s):  
Jamolbek Mattiev ◽  
Branko Kavsek

Building accurate and compact classifiers in real-world applications is one of the crucial tasks in data mining nowadays. In this paper, we propose a new method that can reduce the number of class association rules produced by classical class association rule classifiers, while maintaining an accurate classification model that is comparable to the ones generated by state-of-the-art classification algorithms. More precisely, we propose a new associative classifier that selects “strong” class association rules based on overall coverage of the learning set. The advantage of the proposed classifier is that it generates significantly smaller rules on bigger datasets compared to traditional classifiers while maintaining the classification accuracy. We also discuss how the overall coverage of such classifiers affects their classification accuracy. Performed experiments measuring classification accuracy, number of classification rules and other relevance measures such as precision, recall and f-measure on 12 real-life datasets from the UCI ML repository (Dua, D.; Graff, C. UCI Machine Learning Repository. Irvine, CA: University of California, 2019) show that our method was comparable to 8 other well-known rule-based classification algorithms. It achieved the second-highest average accuracy (84.9%) and the best result in terms of average number of rules among all classification methods. Although not achieving the best results in terms of classification accuracy, our method proved to be producing compact and understandable classifiers by exhaustively searching the entire example space.


Sign in / Sign up

Export Citation Format

Share Document