scholarly journals Computational structure-based drug design: Predicting target flexibility

2018 ◽  
Vol 8 (5) ◽  
pp. e1367 ◽  
Author(s):  
Jelisa Iglesias ◽  
Suwipa Saen-oon ◽  
Robert Soliva ◽  
Victor Guallar
2021 ◽  
Vol 20 ◽  
pp. 117693512110659
Author(s):  
Jonathan Mitchel ◽  
Pratima Bajaj ◽  
Ketki Patil ◽  
Austin Gunnarson ◽  
Emilie Pourchet ◽  
...  

Background: Colorectal cancer is the third largest cause of cancer-related mortality worldwide. Although current treatments with chemotherapeutics have allowed for management of colorectal cancer, additional novel treatments are essential. Intervening with the metabolic reprogramming observed in cancers called “Warburg Effect,” is one of the novel strategies considered to combat cancers. In the metabolic reprogramming pathway, pyruvate dehydrogenase kinase (PDK1) plays a pivotal role. Identification and characterization of a PDK1 inhibitor is of paramount importance. Further, for efficacious treatment of colorectal cancers, combinatorial regimens are essential. To this end, we opted to identify a PDK1 inhibitor using computational structure-based drug design FINDSITEcomb and perform combinatorial studies with 5-FU for efficacious treatment of colorectal cancers. Methods: Using computational structure-based drug design FINDSITEcomb, stearic acid (SA) was identified as a possible PDK1 inhibitor. Elucidation of the mechanism of action of SA was performed using flow cytometry, clonogenic assays. Results: When the growth inhibitory potential of SA was tested on colorectal adenocarcinoma (DLD-1) cells, a 50% inhibitory concentration (IC50) of 60 µM was recorded. Moreover, SA inhibited the proliferation potential of DLD-1 cells as shown by the clonogenic assay and there was a sustained response even after withdrawal of the compound. Elucidation of the mechanism of action revealed, that the inhibitory effect of SA was through the programmed cell death pathway. There was increase in the number of apoptotic and multicaspase positive cells. SA also impacted the levels of the cell survival protein Bcl-2. With the aim of achieving improved treatment for colorectal cancer, we opted to combine 5-fluorouracil (5-FU), the currently used drug in the clinic, with SA. Combining SA with 5-FU, revealed a synergistic effect in which the IC50 of 5-FU decreased from 25 to 6 µM upon combination with 60 µM SA. Further, SA did not inhibit non-tumorigenic NIH-3T3 proliferation. Conclusions: We envision that this significant decrease in the IC50 of 5-FU could translate into less side effects of 5-FU and increase the efficacy of the treatment due to the multifaceted action of SA. The data generated from the current studies on the inhibition of colorectal adenocarcinoma by SA discovered by the use of the computational program as well as synergistic action with 5-FU should open up novel therapeutic options for the management of colorectal adenocarcinomas.


2015 ◽  
Vol 16 (9) ◽  
pp. 901-916 ◽  
Author(s):  
Tao Wang ◽  
Mian-Bin Wu ◽  
Ri-Hao Zhang ◽  
Zheng-Jie Chen ◽  
Chen Hua ◽  
...  

2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Vol 20 (19) ◽  
pp. 1651-1660
Author(s):  
Anuraj Nayarisseri

Drug discovery is one of the most complicated processes and establishment of a single drug may require multidisciplinary attempts to design efficient and commercially viable drugs. The main purpose of drug design is to identify a chemical compound or inhibitor that can bind to an active site of a specific cavity on a target protein. The traditional drug design methods involved various experimental based approaches including random screening of chemicals found in nature or can be synthesized directly in chemical laboratories. Except for the long cycle design and time, high cost is also the major issue of concern. Modernized computer-based algorithm including structure-based drug design has accelerated the drug design and discovery process adequately. Surprisingly from the past decade remarkable progress has been made concerned with all area of drug design and discovery. CADD (Computer Aided Drug Designing) based tools shorten the conventional cycle size and also generate chemically more stable and worthy compounds and hence reduce the drug discovery cost. This special edition of editorial comprises the combination of seven research and review articles set emphasis especially on the computational approaches along with the experimental approaches using a chemical synthesizing for the binding affinity in chemical biology and discovery as a salient used in de-novo drug designing. This set of articles exfoliates the role that systems biology and the evaluation of ligand affinity in drug design and discovery for the future.


Sign in / Sign up

Export Citation Format

Share Document