Aeroelastic design of large wind turbine blades considering damage tolerance

Wind Energy ◽  
2016 ◽  
Vol 20 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Phillip W. Richards ◽  
D. Todd Griffith ◽  
Dewey H. Hodges

Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.



Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1124
Author(s):  
Leon Mishnaevsky Mishnaevsky

Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.



Author(s):  
M. McGugan ◽  
G. Pereira ◽  
B. F. Sørensen ◽  
H. Toftegaard ◽  
K. Branner

The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.



Wind Energy ◽  
2005 ◽  
Vol 8 (2) ◽  
pp. 141-171 ◽  
Author(s):  
K. J. Jackson ◽  
M. D. Zuteck ◽  
C. P. van Dam ◽  
K. J. Standish ◽  
D. Berry


Author(s):  
Peter R Greaves ◽  
Robert G Dominy ◽  
Grant L Ingram ◽  
Hui Long ◽  
Richard Court

Full-scale fatigue testing is part of the certification process for large wind turbine blades. That testing is usually performed about the flapwise and edgewise axes independently but a new method for resonant fatigue testing has been developed in which the flapwise and edgewise directions are tested simultaneously, thus also allowing the interactions between the two mutually perpendicular loads to be investigated. The method has been evaluated by comparing the Palmgren–Miner damage sum around the cross-section at selected points along the blade length that results from a simulated service life, as specified in the design standards, and testing. Bending moments at each point were generated using wind turbine simulation software and the test loads were designed to cause the same amount of damage as the true service life. The mode shape of the blade was tuned by optimising the position of the excitation equipment, so that the bending moment distribution was as close as possible to the target loads. The loads were converted to strain–time histories using strength of materials approach, and fatigue analysis was performed. The results show that if the bending moment distribution is correct along the length of the blade, then dual-axis resonant testing tests the blade much more thoroughly than sequential tests in the flapwise and edgewise directions. This approach is shown to be more representative of the loading seen in service and can thus contribute to a potential reduction in the weight of wind turbine blades and the duration of fatigue tests leading to reduced cost.



Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7526
Author(s):  
Amrit Shankar Verma ◽  
Nils Petter Vedvik ◽  
Zhen Gao ◽  
Saullo G. P. Castro ◽  
Julie J. E. Teuwen

The leading edges of wind turbine blades are adhesively bonded composite sections that are susceptible to impact loads during offshore installation. The impact loads can cause localized damages at the leading edges that necessitate damage tolerance assessment. However, owing to the complex material combinations together with varying bondline thicknesses along the leading edges, damage tolerance investigation of blades at full scale is challenging and costly. In the current paper, we design a coupon scale test procedure for investigating bondline thickness effects on damage tolerance of joints after being subjected to localized impact damages. Joints with bondline thicknesses (0.6 mm, 1.6 mm, and 2.6 mm) are subjected to varying level of impact energies (5 J, 10 J, and 15 J), and the dominant failure modes are identified together with analysis of impact kinematics. The damaged joints are further tested under tensile lap shear and their failure loads are compared to the intact values. The results show that for a given impact energy, the largest damage area was obtained for the thickest joint. In addition, the joints with the thinnest bondline thicknesses displayed the highest failure loads post impact, and therefore the greatest damage tolerance. For some of the thin joints, mechanical interlocking effects at the bondline interface increased the failure load of the joints by 20%. All in all, the coupon scale tests indicate no significant reduction in failure loads due to impact, hence contributing to the question of acceptable localized damage, i.e., damage tolerance with respect to static strength of the whole blade.



Sign in / Sign up

Export Citation Format

Share Document