II. Yeast sequencing reports. The sequence of a 22·4 kb DNA fragment from the left arm of yeast chromosome II reveals homologues to bacterial proline synthetase and murine α-adaptin, as well as a new permease and a DNA-binding protein

Yeast ◽  
1994 ◽  
Vol 10 (11) ◽  
pp. 1489-1496 ◽  
Author(s):  
Philippe de Wergifosse ◽  
Bernard Jacques ◽  
Jean-Luc Jonniaux ◽  
Bénédicte Purnelle ◽  
André Goffeau ◽  
...  
1990 ◽  
Vol 10 (10) ◽  
pp. 5226-5234 ◽  
Author(s):  
Q D Ju ◽  
B E Morrow ◽  
J R Warner

REB1 is a DNA-binding protein that recognizes sites within both the enhancer and the promoter of rRNA transcription as well as upstream of many genes transcribed by RNA polymerase II. We report here the cloning of the gene for REB1 by screening a yeast genomic lambda gt11 library with specific oligonucleotides containing the REB1 binding site consensus sequence. The REB1 gene was sequenced, revealing an open reading frame encoding 809 amino acids. The predicted protein was highly hydrophilic, with numerous OH-containing amino acids and glutamines, features common to many of the general DNA-binding proteins of Saccharomyces cerevisiae, such as ABF1, RAP1, GCN4, and HSF1. There was some homology between a portion of REB1 and the DNA-binding domain of the oncogene myb. REB1 is an essential gene that maps on chromosome II. However, the physiological role that it plays in the cell has yet to be established.


1990 ◽  
Vol 10 (10) ◽  
pp. 5226-5234
Author(s):  
Q D Ju ◽  
B E Morrow ◽  
J R Warner

REB1 is a DNA-binding protein that recognizes sites within both the enhancer and the promoter of rRNA transcription as well as upstream of many genes transcribed by RNA polymerase II. We report here the cloning of the gene for REB1 by screening a yeast genomic lambda gt11 library with specific oligonucleotides containing the REB1 binding site consensus sequence. The REB1 gene was sequenced, revealing an open reading frame encoding 809 amino acids. The predicted protein was highly hydrophilic, with numerous OH-containing amino acids and glutamines, features common to many of the general DNA-binding proteins of Saccharomyces cerevisiae, such as ABF1, RAP1, GCN4, and HSF1. There was some homology between a portion of REB1 and the DNA-binding domain of the oncogene myb. REB1 is an essential gene that maps on chromosome II. However, the physiological role that it plays in the cell has yet to be established.


1997 ◽  
Vol 136 (3) ◽  
pp. 487-500 ◽  
Author(s):  
Dana Halverson ◽  
Mary Baum ◽  
Janet Stryker ◽  
John Carbon ◽  
Louise Clarke

Genetic and biochemical strategies have been used to identify Schizosaccharomyces pombe proteins with roles in centromere function. One protein, identified by both approaches, shows significant homology to the human centromere DNA-binding protein, CENP-B, and is identical to Abp1p (autonomously replicating sequence-binding protein 1) (Murakami, Y., J.A. Huberman, and J. Hurwitz. 1996. Proc. Natl. Acad. Sci. USA. 93:502–507). Abp1p binds in vitro specifically to at least three sites in centromeric central core DNA of S. pombe chromosome II (cc2). Overexpression of abp1 affects mitotic chromosome stability in S. pombe. Although inactivation of the abp1 gene is not lethal, the abp1 null strain displays marked mitotic chromosome instability and a pronounced meiotic defect. The identification of a CENP-B–related centromere DNA-binding protein in S. pombe strongly supports the hypothesis that fission yeast centromeres are structurally and functionally related to the centromeres of higher eukaryotes.


2010 ◽  
Vol 222 (03) ◽  
Author(s):  
S Degen ◽  
S Kuhfittig-Kulle ◽  
JH Schulte ◽  
F Westermann ◽  
A Schramm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document