Asymmetric Distribution of Thermal Stress in a Semi-Infinite Elastic Solid Containing a Penny-Shaped Crack

Author(s):  
K. N. Srivastava ◽  
R. M. Palaiya
2003 ◽  
Vol 19 (1) ◽  
pp. 143-147
Author(s):  
Y. M. Tsai

ABSTRACTThe thermal stress for a penny-shaped crack contained in an infinite isotropic elastic solid initially subjected to an axisymmetrical tension of any amount at infinity is investigated using the techniques of Hankel transforms and multiplying factors. The effect that the lateral normal stress has on the thermal stresses is studied on the basis of the theory of small deformations superposed on finite deformation. Symmetrical thermal loadings are applied over the crack surfaces. For the case of constant temperature over the crack surfaces, expressions for the crack shape and thermal stresses in the crack plane are obtained in closed forms. The stress intensity factor is also obtained and shown to be dependent on the lateral stress.


1975 ◽  
Vol 10 (1) ◽  
pp. 19-24 ◽  
Author(s):  
J R Barber

A solution is given for the steady-state thermal stress and displacement field in an infinite elastic solid containing an insulated penny-shaped crack. The problem is reduced to a mixed-boundary-value problem for the half-space, making use of Green's isothermal solution for the thick elastic plate in complex harmonic potentials and a particular thermoelastic solution due to Williams. In the axisymmetric case, the complex potential reduces to the real harmonic function used by Shail in his solution for the external crack. To illustrate the use of the method in both axisymmetric and non-axisymmetric problems, complete solutionsare given for (1) a uniform heat flow and (2) a linearly varying heat flow disturbed by an insulated penny-shaped crack.


1969 ◽  
Vol 66 (2) ◽  
pp. 439-442
Author(s):  
H. S. Paul

The stress distribution, subject to a constant pressure over the entire surface of a penny-shaped crack is discussed by Sneddon(4). Recently, Robertson (3) has considered the diffraction of a plane longitudinal wave by a penny-shaped crack on a semi-infinite elastic solid. In the present analysis, the propagation of longitudinal wave in an infinite isotropic elastic plate with a penny-shaped crack in the middle has been investigated. The plane longitudinal wave is moving in the positive direction of z-azis and is impinging on the surface of the penny-shaped crack. The dual integral equation technique of Noble(l) is utilized to solve the mixed boundary-value problem. The analysis closely follows the method used in the author's previous paper (2). The vertical displacement is analysed numerically.


Sign in / Sign up

Export Citation Format

Share Document