scholarly journals Repetitive DNA, Genome and Species Relationships in Avena and Arrhenatherum(Poaceae)

2000 ◽  
Vol 86 (6) ◽  
pp. 1135-1142 ◽  
Author(s):  
A Katsiotis
2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


Crop Science ◽  
1992 ◽  
Vol 32 (2) ◽  
pp. 366-369 ◽  
Author(s):  
Luther E. Talbert ◽  
Susan L. Moylan ◽  
LeRoy J. Hansen

1980 ◽  
Vol 8 (15) ◽  
pp. 3319-3333 ◽  
Author(s):  
Lesley W. Coggins ◽  
G.Joan Grindlay ◽  
J.Keith Vass ◽  
Alison A. Slater ◽  
Paul Montague ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 511-519 ◽  
Author(s):  
Robert J Kokoska ◽  
Lela Stefanovic ◽  
Andrew B Buermeyer ◽  
R Michael Liskay ◽  
Thomas D Petes

AbstractThe POL30 gene of the yeast Saccharomyces cerevisiae encodes the proliferating cell nuclear antigen (PCNA), a protein required for processive DNA synthesis by DNA polymerase δ and ϵ. We examined the effects of the pol30-52 mutation on the stability of microsatellite (1- to 8-bp repeat units) and minisatellite (20-bp repeat units) DNA sequences. It had previously been shown that this mutation destabilizes dinucleotide repeats 150-fold and that this effect is primarily due to defects in DNA mismatch repair. From our analysis of the effects of pol30-52 on classes of repetitive DNA with longer repeat unit lengths, we conclude that this mutation may also elevate the rate of DNA polymerase slippage. The effect of pol30-52 on tracts of repetitive DNA with large repeat unit lengths was similar, but not identical, to that observed previously for pol3-t, a temperature-sensitive mutation affecting DNA polymerase δ. Strains with both pol30-52 and pol3-t mutations grew extremely slowly and had minisatellite mutation rates considerably greater than those observed in either single mutant strain.


2005 ◽  
Vol 23 (2) ◽  
pp. 235-239 ◽  
Author(s):  
Louise J. Johnson ◽  
John F. Y. Brookfield

2011 ◽  
Vol 30 (9) ◽  
pp. 1779-1786 ◽  
Author(s):  
Kun Yang ◽  
Hecui Zhang ◽  
Richard Converse ◽  
Yong Wang ◽  
Xiaoying Rong ◽  
...  

1983 ◽  
Vol 3 (8) ◽  
pp. 1511-1517 ◽  
Author(s):  
G Mangiarotti ◽  
C Zuker ◽  
R L Chisholm ◽  
H F Lodish

Nuclear processing of mRNA precursors in differentiating multicellular Dictyostelium discoideum aggregates is markedly slower than in growing amoebae. Thus, we have been able to determine the time of nuclear processing of individual mRNA species in postaggregating cells by following the incorporation of 32PO4 into nuclear and cytoplasmic RNA complementary to cloned cDNAs. Precursors of mRNAs synthesized during both growth and differentiation remain in the nucleus for about 25 to 60 min. By contrast, typical mRNAs which are synthesized only by postaggregative cells have nuclear processing times between 50 and 100 min. Depending on the particular mRNA, between 20 and 60% of nuclear transcripts are converted into cytoplasmic mRNA. A third class of mRNAs are transcribed from a set of repetitive DNA segments and are expressed predominantly during differentiation. Nuclear precursors of these mRNAs are extensively degraded within the nucleus or very rapidly after transport to the cytoplasm. Those sequences that are stable in the cytoplasm exit from the nucleus only after a lag of over 2 h. Thus, mRNAs encoded by different genes that are subject to different types of developmental controls display different times of transit to the cytoplasm and different efficiencies of nuclear processing. Differential nuclear processing may contribute to the regulation of the level of individual cytoplasmic mRNAs.


2009 ◽  
Vol 37 (7) ◽  
pp. 2264-2273 ◽  
Author(s):  
María Méndez-Lago ◽  
Jadwiga Wild ◽  
Siobhan L. Whitehead ◽  
Alan Tracey ◽  
Beatriz de Pablos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document