scholarly journals The Lebesgue Function and Lebesgue Constant of Lagrange Interpolation for Erdoős Weights

1998 ◽  
Vol 94 (2) ◽  
pp. 235-262 ◽  
Author(s):  
S.B. Damelin
2016 ◽  
Vol 8 (4) ◽  
pp. 118 ◽  
Author(s):  
Maha Youssef ◽  
Hany A. El-Sharkawy ◽  
Gerd Baumann

This paper gives an explicit construction of multivariate Lagrange interpolation at Sinc points. A nested operator formula for Lagrange interpolation over an $m$-dimensional region is introduced. For the nested Lagrange interpolation, a proof of the upper bound of the error is given showing that the error has an exponentially decaying behavior. For the uniform convergence the growth of the associated norms of the interpolation operator, i.e., the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature $O((log n)^m)$. We compare the obtained Lebesgue constant bound with other well known bounds for Lebesgue constants using different set of points.


2000 ◽  
Vol 42 (1) ◽  
pp. 98-109 ◽  
Author(s):  
Graeme J. Byrne ◽  
T. M. Mills ◽  
Simon J. Smith

AbstractThis paper presents a short survey of convergence results and properties of the Lebesgue function λm,n(x) for(0, 1, …, m)Hermite-Fejér interpolation based on the zeros of the nth Chebyshev polynomial of the first kind. The limiting behaviour as n → ∞ of the Lebesgue constant Λm,n = max{λm,n(x): −1 ≤ x ≤ 1} for even m is then studied, and new results are obtained for the asymptotic expansion of Λm,n. Finally, graphical evidence is provided of an interesting and unexpected pattern in the distribution of the local maximum values of λm,n(x) if m ≥ 2 is even.


Author(s):  
P. Vértesi

AbstractThe aim of this paper is to continue our investigation of the Lebesgue function of weighted Lagrange interpolation by considering Erdős weights on ℝ and weights on [−1, 1]. The main results give lower bounds for the Lebesgue function on large subsets of the relevant domains.


2002 ◽  
Vol 66 (1) ◽  
pp. 151-162
Author(s):  
Simon J. Smith

Given f ∈ C[−1, 1] and n point (nodes) in [−1, 1], the Hermite-Fejér interpolation polynomial is the polynomial of minimum degree which agrees with f and has zero derivative at each of the nodes. In 1916, L. Fejér showed that if the nodes are chosen to be zeros of Tn (x), the nth Chebyshev polynomial of the first kind, then the interpolation polynomials converge to f uniformly as n → ∞. Later, D.L. Berman demonstrated the rather surprising result that this convergence property no longer holds true if the Chebyshev nodes are extended by the inclusion of the end points −1 and 1 in the interpolation process. The aim of this paper is to discuss the Lebesgue function and Lebesgue constant for Hermite-Fejér interpolation on the extended Chebyshev nodes. In particular, it is shown that the inclusion of the two endpoints causes the Lebesgue function to change markedly, from being identically equal to 1 for the Chebyshev nodes, to having the form 2n2(1 − x2)(Tn (x))2 + O (1) for the extended Chebyshev nodes.


Sign in / Sign up

Export Citation Format

Share Document