Accurate Normalisation of the Beta-Function PDF

1995 ◽  
Vol 119 (2) ◽  
pp. 385-387
Author(s):  
Edward Brizuela
2005 ◽  
Vol 42 (1) ◽  
pp. 21-35 ◽  
Author(s):  
J. Weijian ◽  
G. Mingzhe ◽  
G. Xuemei

A weighted Hardy-Hilbert’s inequality with the parameter λ of form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {\frac{{a_m b_n }}{{(m + n)^\lambda }}} < B^* (\lambda )\left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } a_{a_n }^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } b_n^q } } \right)^q }$$ \end{document} is established by introducing two parameters s and λ, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tfrac{1}{p} + \tfrac{1}{q} = 1,p \geqq q > 1,1 - \tfrac{q}{p} < \lambda \leqq 2,B^* (\lambda ) = B(\lambda - (1 - \tfrac{{2 - \lambda }}{p}),1 - \tfrac{{2 - \lambda }}{p})$$ \end{document} is the beta function. B *(λ) is proved to be best possible. A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.


2021 ◽  
Vol 13 (12) ◽  
pp. 2307
Author(s):  
J. Javier Gorgoso-Varela ◽  
Rafael Alonso Ponce ◽  
Francisco Rodríguez-Puerta

The diameter distributions of trees in 50 temporary sample plots (TSPs) established in Pinus halepensis Mill. stands were recovered from LiDAR metrics by using six probability density functions (PDFs): the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta and gamma-2P functions. The parameters were recovered from the first and the second moments of the distributions (mean and variance, respectively) by using parameter recovery models (PRM). Linear models were used to predict both moments from LiDAR data. In recovering the functions, the location parameters of the distributions were predetermined as the minimum diameter inventoried, and scale parameters were established as the maximum diameters predicted from LiDAR metrics. The Kolmogorov–Smirnov (KS) statistic (Dn), number of acceptances by the KS test, the Cramér von Misses (W2) statistic, bias and mean square error (MSE) were used to evaluate the goodness of fits. The fits for the six recovered functions were compared with the fits to all measured data from 58 TSPs (LiDAR metrics could only be extracted from 50 of the plots). In the fitting phase, the location parameters were fixed at a suitable value determined according to the forestry literature (0.75·dmin). The linear models used to recover the two moments of the distributions and the maximum diameters determined from LiDAR data were accurate, with R2 values of 0.750, 0.724 and 0.873 for dg, dmed and dmax. Reasonable results were obtained with all six recovered functions. The goodness-of-fit statistics indicated that the beta function was the most accurate, followed by the generalized beta function. The Weibull-3P function provided the poorest fits and the Weibull-2P and Johnson’s SB also yielded poor fits to the data.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Qian Chen ◽  
Bicheng Yang

AbstractIn this article, by using weight functions, the idea of introducing parameters, the reverse extended Hardy–Hilbert integral inequality and the techniques of real analysis, a reverse Hardy–Hilbert-type integral inequality involving one derivative function and the beta function is obtained. The equivalent statements of the best possible constant factor related to several parameters are considered. The equivalent form, the cases of non-homogeneous kernel and some particular inequalities are also presented.


1994 ◽  
Vol 21 (6) ◽  
pp. 1074-1080 ◽  
Author(s):  
J. Llamas ◽  
C. Diaz Delgado ◽  
M.-L. Lavertu

In this paper, an improved probabilistic method for flood analysis using the probable maximum flood, the beta function, and orthogonal Jacobi’s polynomials is proposed. The shape of the beta function depends on the sample's characteristics and the bounds of the phenomenon. On the other hand, a serial of Jacobi’s polynomials has been used improving the beta function and increasing its convergence degree toward the real flood probability density function. This mathematical model has been tested using a sample of 1000 generated beta random data. Finally, some practical applications with real data series, from important Quebec's rivers, have been performed; the model solutions for these rivers showed the accuracy of this new method in flood frequency estimation. Key words: probable maximum flood, beta function, orthogonal polynomials, distribution function, flood frequency estimation, data generation, convergency.


1994 ◽  
Vol 14 (3) ◽  
pp. 453-474 ◽  
Author(s):  
Valerio De Angelis

AbstractThe pointwise spectral radii of irreducible matrices whose entries are polynomials with positive, integral coefficients are studied in this paper. Most results are derived in the case that the resulting algebraic function, the beta function of S. Tuncel, is in fact a polynomial. We show that the set of beta functions forms a semiring, and the spectral radius of a matrix of beta functions is again a beta function. We also show that the coefficients of a polynomial beta function p must be real algebraic integers, and p satisfies (after a change of variables if necessary) the inequality for non-zero (and not all positive) complex numbers z1,…,zd. If and the ordered sequence of exponents appearing in p is of the form (m,m+1,…,M−,1,M) for some integers m and M, the same inequality is necessary and sufficient for p to be a beta function.


Sign in / Sign up

Export Citation Format

Share Document