scholarly journals Stability of Traveling Waves with Degenerate Shock for System of One-Dimensional Viscoelastic Model

1995 ◽  
Vol 120 (2) ◽  
pp. 304-318 ◽  
Author(s):  
K. Nishihara
Author(s):  
B. F. Feeny

A method of complex orthogonal decomposition is applied to the extraction of modes from simulation data of multi-modal traveling waves in one-dimensional continua. The decomposition of a transient wave is performed on a nondispersive pulse. Complex wave modes are then extracted from a two-harmonic simulation of a dispersive medium. The wave frequencies and wave numbers are obtained by looking at the whirl of the complex modal coordinate, and the complex modal function, respectively, in the complex plane. From the frequencies and wave numbers, the wave speeds are then estimated, as well as the group velocity associated with the two waves. The group velocity is also extracted directly from a decomposition of the traveling envelope of the waveform. The observations from the first two examples are used to help interpret the decomposition of a simulation of the traveling waves produced by a Gaussian initial displacement profile in an Euler-Bernoulli beam. While such a disturbance produces a continuous spectrum of wave components, the sampling conditions limit the range of wave components (i.e. mode shapes and modal coordinates) to be extracted. Within this working range, the wave numbers and frequencies are obtained from the extraction, and compared to theory. The frequency distribution is then approximated. The results are robust to random noise.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Liang Jia ◽  
Guangli Huang

In order to predict the creep settlement of high-fill embankments, the time-dependent viscoelastic model of Poynting–Thomson (the standard linear solid) has been chosen to represent the creep behavior of soils. In the present study, the hereditary integral was applied to calculate the strain while the load increase is varied with time. Calculation expressions of the creep settlement of an embankment during and after construction were obtained under one-dimensional compression conditions. Using this approach, the three parameters of every layer can be determined and adjusted to accommodate in situ monitoring data. The calculated results agreed well with those from the field, which imply that the method proposed in this paper can give a precise prediction of creep settlement of high-fill embankments.


2012 ◽  
Vol 157-158 ◽  
pp. 419-423
Author(s):  
Ya Peng Zhang ◽  
Feng Gao

Considering the rheological characteristics of soil, think the fractional maxwell with viscoelastic model can be described, the fractional maxwell model into integral form of saturated soft soil layer, the one dimensional compression, through the Laplace transform problems get instantaneous loading and single stage, the analytical solution of the loading conditions.


Sign in / Sign up

Export Citation Format

Share Document