displacement profile
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Yifu Lan ◽  

Recently, there has been an increasing emphasis on the Indirect bridge health monitoring method employing passing vehicles, which is regarded as one of the most effective approaches in bridge damage screening. However,few researches have been conducted on the drive-by bridge inspection method using vehicle displacement profile as damage indicator. This paper proposes a new drive-by inspection method based on vertical vehicle displacementprofile with parameter optimization. A generalized Vehicle-Bridge Interaction (VBI) system is built in MATLAB, where the bridge is modelled as a simply supported beam with 10 elements, and the passing vehicle is represented as a simplified quarter car. To improve the result sensitivity to bridge damage, the parameter optimization of vehicle configuration is processed employing the Monte Carlo methods. Results show that the proposed method can successfully detect and localize bridge damage by using vertical vehicle displacement profile as damage indicator only, and its performance may depend on the vehicle configuration. The proposed approach provides merits in simplicity and efficiency, which can be applied widely to the bridge damage detection problems.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7740
Author(s):  
Falk-Martin Hoffmann ◽  
Keith R. Holland ◽  
Nick R. Harris ◽  
Neil M. White ◽  
Filippo Maria Fazi

This work presents a novel type of actuator that improves over the standard cantilever by permitting daisy-chaining while minimising stress to the joint connecting to the load. A detailed structural and functional comparison of the proposed device against the cantilever actuator as a baseline is given, led by a brief revision of the cantilever actuator as the state-of-the-art that highlights its limitations with respect to daisy-chaining and the stress it inherently creates within the joint connecting to the load when attempting out-of-plane displacement without rotation. Simulations of both devices’ performance confirm that the newly proposed device yields the targeted displacement profile that both enables the daisy-chaining of such a device into a higher-order actuator for increased displacement and reduce stress in the joint with the load. This comes at the cost of reduced maximum displacement compared to the cantilever, which can be overcome by daisy-chaining. The proposed device’s performance is further evaluated on the basis of manufactured prototypes measured by means of a laser scanning vibrometer. The prototype was manufactured on a 150m alumina substrate, and both electrodes and piezoelectric layer were deposited in a thick-film printing process.


Abstract. Recently, there has been an increasing emphasis in the Indirect bridge health monitoring method employing passing vehicles, which is regarded as one of the most effective approaches in bridge damage screening. However, few researches have been conducted on the Drive-by bridge inspection method using vehicle displacement profile as damage indicator due to the challenges in displacement measurement and result accuracy. This paper proposes an optimization approach of designing the optimum vehicle parameters to improve the performance of vehicle displacement-based Drive-by bridge damage inspection. A generalized Vehicle-Bridge Interaction (VBI) system is built in MATLAB, where the bridge is modelled as a simply supported beam with 10 elements and the passing vehicle is represented as a simplified quarter car. Employing the Monte Carlo methods, the optimum parameters are determined by numerous simulations processed under diverse damage scenarios. Results show that by employing the optimal vehicle parameters, the bridge damages can be detected effectively and accurately for general damage scenarios based on the vehicle displacement profile. The proposed optimization method can contribute to the wide application of vehicle displacement-based Drive-by bridge damage inspection, providing merits in simplicity and visualization.


Sign in / Sign up

Export Citation Format

Share Document