Genetic divergence at the NAD+-dependent malic enzyme locus in Atlantic salmon from Europe and North America

1997 ◽  
Vol 51 (1) ◽  
pp. 155-163 ◽  
Author(s):  
E Verspoor
2018 ◽  
Vol 27 (20) ◽  
pp. 4026-4040 ◽  
Author(s):  
Emma V. A. Sylvester ◽  
Robert G. Beiko ◽  
Paul Bentzen ◽  
Ian Paterson ◽  
John B. Horne ◽  
...  

1972 ◽  
Vol 29 (2) ◽  
pp. 179-185 ◽  
Author(s):  
O. L. Nyman ◽  
J. H. C. Pippy

Differences in electropherograms produced by serum proteins and liver esterases were used to identify North American and European Atlantic salmon (Salmo salar) caught at sea. Division of salmon according to continent of origin was supported by mean river age, mean fork length, and abundance of the two parasites Anisakis simplex and Eubothrium crassum. Consistent differences in electrophoretic behaviour of serum proteins and liver esterases in salmon from the two continents support the suggestion that salmon from North America and Europe represent different subspecies.


2001 ◽  
Vol 58 (3) ◽  
pp. 389-403 ◽  
Author(s):  
M. COLEMAN ◽  
D. G. FORBES ◽  
R. J. ABBOTT

Examination of morphology, ploidy and interfertility in the two subspecies of the Old World Senecio flavus (Decne.) Sch. Bip. (Compositae) and the closely related New World S. mohavensis A. Gray does not support the subspecific taxonomy of S. flavus. On the basis of our results S. flavus subsp. breviflorus Kadereit is transferred to S. mohavensis as a new subspecies: S. mohavensis subsp. breviflorus (Kadereit) M. Coleman comb. nov. The new subspecies has a distribution that includes Arabia, the Middle East, Sinai, Iran, Afghanistan, Djibouti, and the Thar Desert of Pakistan. The type subspecies of S. mohavensis occurs in the Mojave and Sonoran deserts of North America, providing an unusual disjunct distribution at the species level. Separation from S. flavus is based upon differences in morphology and chromosome number. Senecio flavus is diploid (2n = 20), while both subspecies of S. mohavensis are tetraploid (2n = 40). Further support for the new taxonomic treatment is provided by the results of controlled crosses. No artificial hybrids have been generated from crosses made between the previously recognized subspecies of S. flavus, while crosses between the newly recognized subspecies of S. mohavensis have produced fertile hybrids. The fertility of the hybrids is significantly lower than the parental taxa (P<0.001), indicating partial genetic divergence since isolation. Previous studies of isozyme and cpDNA variation in all three taxa also support the new treatment. The similarity of the S. mohavensis subspecies suggests a relatively recent separation, although the amount of genetic divergence does not support a post-Colombian introduction. Given that land bridges to North America via Beringia and the North Atlantic last existed in the Oligocene, long-distance dispersal seems the most likely explanation. Natural dispersal to rather than from the New World is supported, but whether this took place in an easterly or westerly direction is unclear. The evolution of S. mohavensis remains equivocal.


2015 ◽  
Author(s):  
Tutku Aykanat ◽  
Susan E Johnston ◽  
Panu Orell ◽  
Eero Niemelä ◽  
Jaakko Erkinaro ◽  
...  

Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined SNP-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine scale sub-population differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring sub-populations had low but significant genetic differentiation (FST = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two sub-populations and there were significant differences in juvenile growth rates and size-at-age after oceanic migration between individuals in the respective sub-populations. Our findings suggest that different evolutionary processes affect each sub-population and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence.


ARCTIC ◽  
1958 ◽  
Vol 11 (2) ◽  
pp. 86 ◽  
Author(s):  
G. Power

Information is presented on distribution of landlocked salmon, including the Hamilton, Upper George, Koksoak and Larch Rivers, Knob and other lakes in Quebec-Labrador. Size, weight and growth rate are given on the Ouananiche (landlocked) salmon of Lakes Astray and Aigneau. Theories on the origin and distribution of Atlantic freshwater salmon are discussed; effects of climate and isolation are considered.


Sign in / Sign up

Export Citation Format

Share Document