scholarly journals On the Positive Solutions for Semilinear Elliptic Equations on Annular Domain with Non-homogeneous Dirichlet Boundary Condition

1994 ◽  
Vol 181 (2) ◽  
pp. 348-361 ◽  
Author(s):  
M.G. Lee ◽  
S.S. Lin
2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Wenyan Chen ◽  
Ya Chen

A Lotka-Volterra competition model with cross-diffusions under homogeneous Dirichlet boundary condition is considered, where cross-diffusions are included in such a way that the two species run away from each other because of the competition between them. Using the method of upper and lower solutions, sufficient conditions for the existence of positive solutions are provided when the cross-diffusions are sufficiently small. Furthermore, the investigation of nonexistence of positive solutions is also presented.


2008 ◽  
Vol 2 (2) ◽  
pp. 158-174 ◽  
Author(s):  
Qianqiao Guo ◽  
Pengcheng Niu ◽  
Jingbo Dou

We consider the semilinear elliptic problem with critical Hardy-Sobolev exponents and Dirichlet boundary condition. By using variational methods we obtain the existence and multiplicity of nontrivial solutions and improve the former results.


Author(s):  
Marcelo Montenegro ◽  
Antonio Suárez

We show the existence and non-existence of positive solutions to a system of singular elliptic equations with the Dirichlet boundary condition.


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


1999 ◽  
Vol 22 (4) ◽  
pp. 869-883 ◽  
Author(s):  
Alan V. Lair ◽  
Aihua W. Wood

We show that large positive solutions exist for the equation(P±):Δu±|∇u|q=p(x)uγinΩ⫅RN(N≥3)for appropriate choices ofγ>1,q>0in which the domainΩis either bounded or equal toRN. The nonnegative functionpis continuous and may vanish on large parts ofΩ. IfΩ=RN, thenpmust satisfy a decay condition as|x|→∞. For(P+), the decay condition is simply∫0∞tϕ(t)dt<∞, whereϕ(t)=max|x|=tp(x). For(P−), we require thatt2+βϕ(t)be bounded above for some positiveβ. Furthermore, we show that the given conditions onγandpare nearly optimal for equation(P+)in that no large solutions exist if eitherγ≤1or the functionphas compact support inΩ.


Sign in / Sign up

Export Citation Format

Share Document