scholarly journals L2-Perturbation of a Linear Delay Differential Equation

1995 ◽  
Vol 195 (2) ◽  
pp. 415-427 ◽  
Author(s):  
I. Gyori ◽  
M. Pituk

In this article the authors established sufficient condition for the first order delay differential equation in the form , ( ) where , = and is a non negative piecewise continuous function. Some interesting examples are provided to illustrate the results. Keywords: Oscillation, delay differential equation and bounded. AMS Subject Classification 2010: 39A10 and 39A12.


Author(s):  
М.Г. Мажгихова

Методом функции Грина получено решение задачи Стеклова первого класса для линейного уравнения с дробной производной Герасимова-Капуто с запаздывающим аргументом. Доказана теорема существования и единственности задачи. The solution to the Steklov problem with conditions of the first class for a linear delay differential equation with a Gerasimov-Caputo fractional derivative is obtained by Green function method. The existence and uniqueness theorem to the problem is proved.


2019 ◽  
Vol 93 ◽  
pp. 58-65 ◽  
Author(s):  
Ábel Garab ◽  
Mihály Pituk ◽  
Ioannis P. Stavroulakis

2019 ◽  
Vol 39 (4) ◽  
pp. 483-495 ◽  
Author(s):  
Jozef Džurina ◽  
Irena Jadlovská ◽  
Ioannis P. Stavroulakis

The main purpose of this paper is to improve recent oscillation results for the second-order half-linear delay differential equation \[\left(r(t)\left(y'(t)\right)^\gamma\right)'+q(t)y^\gamma(\tau(t))= 0, \quad t\geq t_0,\] under the condition \[\int_{t_0}^{\infty}\frac{\text{d} t}{r^{1/\gamma}(t)} \lt \infty.\] Our approach is essentially based on establishing sharper estimates for positive solutions of the studied equation than those used in known works. Two examples illustrating the results are given.


Sign in / Sign up

Export Citation Format

Share Document