Short-Range Characterization of the MeAr (Me=Zn, Cd) Ground-State Potentials from Fluorescence Spectra

2002 ◽  
Vol 212 (2) ◽  
pp. 162-170 ◽  
Author(s):  
J. Koperski ◽  
M. Czajkowski
Author(s):  
Jonathan Laurent ◽  
John Bozek ◽  
Marc BRIANT ◽  
Pierre Carcabal ◽  
Denis Cubaynes ◽  
...  

We studied the Iron (II) Phthalocyanine molecule in the gas-phase. It is a complex transition organometallic compound, for which, the characterization of its electronic ground state is still debated more...


1985 ◽  
Vol 39 (3) ◽  
pp. 444-451 ◽  
Author(s):  
F. E. Lytle ◽  
R. M. Parrish ◽  
W. T. Barnes

The construction and operating principles of a two-color pump/probe spectrometer are described. This instrument is capable of obtaining ground-state absorption spectra, both singlet-singlet and triplet-triplet excited-state absorption spectra, photoproduct spectra, and stimulated fluorescence spectra. In addition, time-dependent measurements can be made with an impulse response of 250 ps and a free temporal range of 13 ns.


Synlett ◽  
2022 ◽  
Author(s):  
Eva Bednářová ◽  
Logan R. Beck ◽  
Tomislav Rovis ◽  
Samantha L. Goldschmid ◽  
Katherine Xie ◽  
...  

AbstractThe use of low-energy deep-red (DR) and near-infrared (NIR) light to excite chromophores enables catalysis to ensue across barriers such as materials and tissues. Herein, we report the detailed photophysical characterization of a library of OsII polypyridyl photosensitizers that absorb low-energy light. By tuning ligand scaffold and electron density, we access a range of synthetically useful excited state energies and redox potentials.1 Introduction1.1 Scope1.2 Measuring Ground-State Redox Potentials1.3 Measuring Photophysical Properties1.4 Synthesis of Osmium Complexes2 Properties of Osmium Complexes2.1 Redox Potentials of Os(L)2-Type Complexes2.2 Redox Potentials of Os(L)3-Type Complexes2.3 UV/Vis Absorption and Emission Spectroscopy3 Conclusions


Nano Letters ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 6859-6864 ◽  
Author(s):  
Xuelei Su ◽  
Can Li ◽  
Qingyang Du ◽  
Kun Tao ◽  
Shiyong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document