absorption and emission spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 18)

H-INDEX

25
(FIVE YEARS 2)

Synlett ◽  
2022 ◽  
Author(s):  
Eva Bednářová ◽  
Logan R. Beck ◽  
Tomislav Rovis ◽  
Samantha L. Goldschmid ◽  
Katherine Xie ◽  
...  

AbstractThe use of low-energy deep-red (DR) and near-infrared (NIR) light to excite chromophores enables catalysis to ensue across barriers such as materials and tissues. Herein, we report the detailed photophysical characterization of a library of OsII polypyridyl photosensitizers that absorb low-energy light. By tuning ligand scaffold and electron density, we access a range of synthetically useful excited state energies and redox potentials.1 Introduction1.1 Scope1.2 Measuring Ground-State Redox Potentials1.3 Measuring Photophysical Properties1.4 Synthesis of Osmium Complexes2 Properties of Osmium Complexes2.1 Redox Potentials of Os(L)2-Type Complexes2.2 Redox Potentials of Os(L)3-Type Complexes2.3 UV/Vis Absorption and Emission Spectroscopy3 Conclusions


Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Abigail E. Reese ◽  
Charles Lochenie ◽  
Ailsa Geddis ◽  
Luana A. Machado ◽  
Marcos C. de Souza ◽  
...  

Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic electrophilic substitution from commercially available thiophenols. The analysis of the photophysical properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal fluorescence microscopy.


2021 ◽  
Author(s):  
Mini Loya ◽  
Bholanath Dolai ◽  
Ananta Kumar Atta

Abstract The sensing properties of naphthaldimine-glucofuranose conjugates 1 and 2 towards metal ions were investigated by 1H NMR titration, FTIR, absorbance, and fluorescence spectroscopic methods. The absorbance and fluorescence studies indicated that compound 1 formed coordination with Fe2+ and Cu2+ ions in DMSO through color changes yellow to brown and colorless, respectively. The Job's plots using absorbance data showed metal-ligand binding ratio is 1:1 for both cases. The formation of 1-Fe2+ and 1-Cu2+ complexes have been analyzed by absorption and emission spectroscopy, high-resolution mass spectrometry (HRMS) data, FTIR, 1H NMR titration experiment, and DFT calculations. The detection limits of naphthaldimine sugar conjugate 1 towards Fe2+/Cu2+ were calculated from UV-vis and fluorescence data according to the standard method. The sugar-naphthaldimine conjugate 2 has been used to establish the binding mode of 1 with Fe2+ or Cu2+ ions in DMSO.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Washat Ware ◽  
Tia Wright ◽  
Antony Davita ◽  
Evgeny Danilov ◽  
Bhoj Gautam

Organometal halides are promising materials for photovoltaic applications, offering tunable electronic levels, excellent charge transport, and simplicity of thin-film device fabrication. Two-dimensional (2D) perovskites have emerged as promising candidates over three-dimensional (3D) ones due to their interesting optical and electrical properties. However, maximizing the power conversion efficiency is a critical issue to improve the performance of these solar cells. In this work, we studied the photophysics of a two-dimensional (2D) perovskite (CH3NH3)2Pb(SCN)2I2 thin film using steady-state and time-resolved absorption and emission spectroscopy and compared it with the three-dimensional (3D) counterpart CH3NH3PbI3. We observed a higher bandgap and faster charge recombination in (CH3NH3)2Pb(SCN)2I2 compared to CH3NH3PbI3. This work provides an improved understanding of fundamental photophysical processes in perovskite structures and provides the guideline for the design, synthesis, and fabrication of solar cells.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Christian Wahl ◽  
Marvin Hoffmann ◽  
Thilo vom Hoevel ◽  
Frank Vewinger ◽  
Martin Weitz

Author(s):  
Gabriel E. Gomez Pinheiro ◽  
Heiko Ihmels

AbstractThe suitability of 3-hydroxy-4-pyridylisoquinoline to operate as fluorescent chemosensor for the detection of metal ions was investigated. For that purpose, the interactions of the title compound with selected metal ions were investigated by absorption and emission spectroscopy. The complexation of Zn2+, Fe2+, Mg2+ with 1:1 and 2:1 stoichiometry leads to characteristic optical responses that depend significantly on the employed solvents, thus allowing for the fluorimetric identification and detection of particular metal cations in a matrix-based pattern analysis or by fluorimetric titrations. Graphical abstract


2020 ◽  
Vol 16 ◽  
Author(s):  
Nilimesh Das ◽  
Tanmoy Khan ◽  
Aritra Das ◽  
Vipin Kumar Jain ◽  
Joydev Acharya ◽  
...  

Aim: Selective and sensitive visual detection of Cu2+in aqueous solution at PPB level using easily synthesized compound. Background: The search for a chemosensor that can detect Cu2+ is very long owing to the fact that an optimum level of Cu2+ is required for human health and the recommended amount of Cu2+ in drinking water is set to be 1-2 mgL-1 . Thus, it is very important to detect Cu2+ even at a very low concentration to assess the associated health risks. Objective: We are still seeking for the easiest, cheapest, fastest and greenest sensor that can selectively, sensitively and accurately detect Cu2+ with lowest detection limit. Our objective of this work is to find one such Cu2+ sensor. Methods: We have synthesized a quinoline derivative following very easy synthetic procedures and characterize the compound by standard methods. For sensing study, we used steady state absorption and emission spectroscopy. Results: Our sensor can detect Cu2+ selectively and sensitively in aqueous solution instantaneously even in the presence of excess amount of other salts. The pale-yellow color of the sensor turns red on the addition of Cu2+ . There is no interference from other cations and anions. A 2:1 binding mechanism of the ligand with Cu2+ is proposed using Jobs plot with binding constant in the order of 109 M-2 . We calculated the LOD to be 18 ppb, which is quite low than what is permissible in drinking water. Conclusion: We developed a new quinoline based chemo-sensor following straightforward synthetic procedure from very cheap starting materials that can detect Cu2+ visually and instantaneously in aqueous solution with ppb level sensitivity and zero interference from other ions.


2020 ◽  
Vol 3 (1) ◽  
pp. 106
Author(s):  
Vanessa S. D. Gomes ◽  
João C. C. Ferreira ◽  
Renato E. F. Boto ◽  
Paulo Almeida ◽  
Maria João M. F. Sousa ◽  
...  

Two squarylium cyanine dyes were synthesized and characterized by the usual analytical techniques, including Vis-NIR absorption and emission spectroscopy. Their antifungal activity was evaluated, through the obtention of minimum inhibitory concentration (MIC) values, using yeasts of the species Saccharomyces cerevisiae as a biological model.


2020 ◽  
Vol 16 ◽  
pp. 1066-1074 ◽  
Author(s):  
Nuray Altinolcek ◽  
Ahmet Battal ◽  
Mustafa Tavasli ◽  
William J Peveler ◽  
Holly A Yu ◽  
...  

Two novel carbazole-based compounds 7a and 7b were synthesised as potential candidates for application in organic electronics. The materials were fully characterised by NMR spectroscopy, mass spectrometry, FTIR, thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry, and absorption and emission spectroscopy. Compounds 7a and 7b, both of which were amorphous solids, were stable up to 291 °C and 307 °C, respectively. Compounds 7a and 7b show three distinctive absorption bands: high and mid energy bands due to locally excited (LE) transitions and low energy bands due to intramolecular charge transfer (ICT) transitions. In dichloromethane solutions compounds 7a and 7b gave emission maxima at 561 nm and 482 nm with quantum efficiencies of 5.4% and 97.4% ± 10%, respectively. At positive potential, compounds 7a and 7b gave two different oxidation peaks, respectively: quasi-reversible at 0.55 V and 0.71 V, and reversible at 0.84 V and 0.99 V. At negative potentials, compounds 7a and 7b only exhibited an irreversible reduction peak at −1.86 V and −1.93 V, respectively.


Sign in / Sign up

Export Citation Format

Share Document