singlet ground state
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 26)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dirk Wulferding ◽  
Youngsu Choi ◽  
Seungyeol Lee ◽  
Mikhail A. Prosnikov ◽  
Yann Gallais ◽  
...  

AbstractThe Shastry–Sutherland compound SrCu2(BO3)2 constituting orthogonally coupled dimers harbors an S = 0 singlet ground state. The confluence of strong interdimer interaction and frustration engenders a spectrum of low-energy excitations including localized triplons as well as singlet and triplet bound states. Their dynamics are controlled by an external magnetic field and temperature. Here, we employ high-field Raman spectroscopy to map the field and temperature evolution of such bosonic composite quasiparticles on approaching the 1/8 magnetization plateau. Our study unveils that the magnetic field and thermal fluctuations show remarkably similar effects in melting the singlet bound states, but are disparate in their effects on the fine spectral shapes. This, together with the anti-crossing of two singlet bound states in the intermediate field B = 10 − 16 T, is discussed in terms of the correlated dynamics of frustrated, interacting bosons.


2021 ◽  
Author(s):  
Omri Abarbanel ◽  
Julisa Rozon ◽  
Geoffrey Hutchison

Organic π-conjugated polymers with a triplet ground state have been the focus of recent research for their interesting and unique electronic properties, arising from the presence of the two unpaired electrons. These polymers are usually built from alternating electron-donating and electron-accepting monomer pairs which lower the HOMO-LUMO gap and yield a triplet state instead of the typical singlet ground state. In this paper we use density functional theory calculations to explore the design rules that govern the creation of a ground state triplet conjugated polymer, and find that a small HOMO-LUMO gap in the singlet state is the best predictor for the existence of a triplet ground state, compared to previous use of pro-quinoidal character. This work can accelerate the discovery of new stable triplet materials by reducing the computa- tional resources needed for electronic-state calculations and the number of potential candidates for synthesis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Victor V. Slavin ◽  
Vladyslav O. Cheranovskii

Abstract The exact diagonalization (ED) approach and Quantum Monte-Carlo (QMC) method were used for the study of the lowest energy states and low-temperature magnetic properties of some disordered 1D Heisenberg spin-1/2 systems formed by two types of three-spin structural units. For the system with a singlet ground state and the random distribution of structural units along the chain system, a significant decrease of the size of the intermediate magnetization plateau in comparison to the corresponding uniform spin system was found. For the “polyallyl” spin chain with a macroscopic value of the ground state spin, a transition to the singlet ground state due to the effect of compositional disorder was observed.


2021 ◽  
Author(s):  
James Furness ◽  
Ruiqi Zhang ◽  
Jianwei Sun

Abstract In chemistry and condensed matter physics the solution of simple paradigm systems, such as the hydrogen atom and the uniform electron gas, plays a critical role in understanding electron behaviors and developing electronic structure methods. The H2 molecule is a paradigm system for strong correlation with a spin-singlet ground state that localizes the two electrons onto opposite protons at dissociation. We extend H2 to a new paradigm system by using fractional nuclear charges to break the left-right nuclear symmetry, thereby enabling the competition between strong correlation and charge transfer that drives the exotic properties of many materials. This modification lays a foundation for improving practical electronic structure theories and provides an extendable playground for analyzing how the competition appears and evolves.


2021 ◽  
Author(s):  
Zhongxin Chen ◽  
Yuan Li ◽  
Wenqiang Li ◽  
Weiya Zhu ◽  
Miao Zeng ◽  
...  

The active materials of organic solar cells are widely recognized to show closed-shell singlet ground state and their electron spin resonance signals are attributed to the defects and impurities. Herein, we disclose the inherent open-shell singlet ground state of donors and the closed-shell structure of acceptors via the combination of variable temperature NMR, electron spin resonance, superconducting quantum interference device and theoretical calculation, providing a new perspective to understand the intrinsic molecular structure in organic solar cells.


2021 ◽  
Author(s):  
Zhongxin Chen ◽  
Yuan Li ◽  
Wenqiang Li ◽  
Weiya Zhu ◽  
Miao Zeng ◽  
...  

The active materials of organic solar cells are widely recognized to show closed-shell singlet ground state and their electron spin resonance signals are attributed to the defects and impurities. Herein, we disclose the inherent open-shell singlet ground state of donors and the closed-shell structure of acceptors via the combination of variable temperature NMR, electron spin resonance, superconducting quantum interference device and theoretical calculation, providing a new perspective to understand the intrinsic molecular structure in organic solar cells.


2021 ◽  
Vol 21 (3) ◽  
pp. 769
Author(s):  
Noorshida Mohd Ali ◽  
Anthony J. H. M. Meijer ◽  
Michael D. Ward ◽  
Norlinda Daud ◽  
Norhayati Hashim ◽  
...  

Luminescent cyanometallate [Ir(ppy)2(CN)2]– (ppy = C6H5C5H4N) has recently gained attention due to its desired photophysical properties. Our research group reported that the [Ir(ppy)2(CN)2]– has shown a negative solvatochromism like [Ru(bipy)(CN)4]2–, resulting in a blue-shift of the UV-Vis absorption bands in the water. Therefore, to gain insight into the specific solvent-solute interaction governed by the hydrogen bond in the solvation hydration shell, density functional theory (DFT) calculations were performed on the singlet ground state of the [Ir(ppy)2(CN)2]– and its solvent environment in the water at B3LYP level theory. It was demonstrated, seven water molecules provided a good description of the relevant spectra: IR and UV-Vis. The calculation reproduced the positions and intensities of the observed n(CºN) bands at 2069 and 2089 cm–1. The calculated MLCT transition wavelength was 366 nm vs. a measured value of 358 nm, differing by 8 nm. The study revealed the water molecules interacted with cyanide ligands through CN⋯H-OH type hydrogen bonds and water-water interactions (HO-H⋯OH2 type hydrogen bonds) were involved in the solvation hydration shell around the [Ir(ppy)2(CN)2]–.


2021 ◽  
Author(s):  
Yanxing Yang ◽  
Cheng Tan ◽  
Zihao Zhu ◽  
J. Zhang ◽  
Zhaofeng Ding ◽  
...  

Abstract Quantum fluctuations are expected to lead to highly entangled spin-liquid states in some two-dimensional spin-1/2 compounds. We have synthesized and measured thermodynamic properties and muon relaxation rates in two related such compounds, one of which is the least disordered of this kind synthesized hitherto and reveals intrinsic properties of a class of spin-liquids. Its measured properties can all be simply characterized by scale invariant time-dependent fluctuations with a single parameter. The specific heat divided by temperature and muon relaxation rates are both temperature independent at low temperatures, followed by a logarithmic decrease with increasing temperature. Even more remarkably, ∼57% of the magnetic entropy is missing down to temperatures of O(10−3) the exchange energy, independent of magnetic field up to gµBH > kBT . This is evidence that quantum fluctuations lead either to a gigantic specific heat peak from topological singlet excitations below such temperatures, or to an extensively degenerate topological singlet ground state. These results reveal an ultra-quantum state of matter.


Sign in / Sign up

Export Citation Format

Share Document