nmr characterization
Recently Published Documents


TOTAL DOCUMENTS

1383
(FIVE YEARS 130)

H-INDEX

63
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Jiahui Shen ◽  
Victor Terskikh ◽  
Jochem Struppe ◽  
Alia Hassan ◽  
Martine Monette ◽  
...  

We report synthesis and solid-state 17O NMR characterization of α-D-glucose for which all six oxygen atoms are site-specifically 17O-labeled. Solid-state 17O NMR spectra were recorded for α-D-glucose/NaCl/H2O (2/1/1) cocrystals under...


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Omojola Awogbemi ◽  
Daramy Vandi Von Kallon ◽  
Victor Sunday Aigbodion ◽  
Vuyisa Mzozoyana

The search for a cost-effective, environmentally friendly and sustainable feedstock for biodiesel production has attracted attention among researchers. After frying, palm oil may become thermally degraded and unsuitable for consumption. In the current effort, neat palm oil (NPO), waste palm oil earlier utilized for frying fish and chips (WPOFC) and waste palm oil previously utilized to fry sausage and chips (WPOSC) were transesterified into waste palm oil methyl ester, namely, WPOMEFC and WPOMESC, respectively. The PO, WPOs and their ester derivatives were subjected to physicochemical properties, fatty acid (FA) compositions and 1H and 13C nuclear magnetic resonance (NMR) analyses. The thermal degradation, transesterification process and the foods the palm oil was used to fry affected the density, kinematic viscosity, acid value, pH, iodine value and FA profile of the samples. The outcome of the characterization reveals that the 1H and 13C NMR spectra of NPO, WPOFC and WPOSC show clear similarity, but NPO exhibits different intensities from that of the WPO samples. The absence of the peaks between δ 4.6 ppm and 5.0 ppm in the 1H NMR spectrum signifies the complete transformation of triglycerides in the WPO samples into biodiesel. The 13C NMR spectrum indicates the presence of ester carbonyl carbon (C=O) in WPOMEFC and WPOMESC, peculiar to ester, at a chemical shift ranging from 174.8 ppm to 174.9 ppm.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4071
Author(s):  
Yu Yu Win ◽  
Penpimon Charoenkanburkang ◽  
Vudhiporn Limprasutr ◽  
Ratchanee Rodsiri ◽  
Yue Pan ◽  
...  

Asiatic acid (AA), a natural triterpene found in Centalla asiatica, possesses polypharmacological properties that can contribute to the treatment and prophylaxis of various diseases. However, its hydrophobic nature and rapid metabolic rate lead to poor bioavailability. The aim of this research was to develop a thermoresponsive nanogel from hyaluronic acid (HA) for solubility and stability enhancement of AA. Poly(N-isopropylacrylamide) (pNIPAM) was conjugated onto HA using a carbodiimide reaction followed by 1H NMR characterization. pNIPAM-grafted HA (HA-pNIPAM) nanogels were prepared with three concentrations of polymer, 0.1, 0.15 and 0.25% w/v, in water by the sonication method. AA was loaded into the nanogel by the incubation method. Size, morphology, AA loading capacity and encapsulation efficiency (EE) were analyzed. In vitro cytocompatibility was evaluated in fibroblast L-929 cells using the PrestoBlue assay. Single-dose toxicity was studied using rats. HA-pNIPAM nanogels at a 4.88% grafting degree showed reversible thermo-responsive behavior. All nanogel formulations could significantly increase AA water solubility and the stability was higher in nanogels prepared with high polymer concentrations over 180 days. The cell culture study showed that 12.5 µM AA in nanogel formulations was considered non-toxic to the L-929 cells; however, a dose-dependent cytotoxic effect was observed at higher AA-loaded concentrations. In vivo study proved the non-toxic effect of AA loaded in HA-pNIPAM nanogels compared with the control. Taken together, HA-pNIPAM nanogel is a promising biocompatible delivery system both in vitro and in vivo for hydrophobic AA molecules.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksander Jaworski ◽  
Jędrzej Piątek ◽  
Liuda Mereacre ◽  
Cordula Braun ◽  
Adam Slabon

Abstract We report the first magic-angle spinning (MAS) nuclear magnetic resonance (NMR) study on Sn(NCN). In this compound the spatially elongated (NCN)2− ion is assumed to develop two distinct forms: either cyanamide (N≡C–N2−) or carbodiimide (−N=C=N−). Our 14N MAS NMR results reveal that in Sn(NCN) the (NCN)2− groups exist exclusively in the form of symmetric carbodiimide ions with two equivalent nitrogen sites, which is in agreement with the X-ray diffraction data. The 14N quadrupolar coupling constant | C Q | $\vert {C}_{\text{Q}}\vert $  ≈ 1.1 MHz for the −N=C=N− ion in Sn(NCN) is low when compared to those observed in molecular compounds that comprise cyano-type N≡C– moieties ( | C Q | $\vert {C}_{\text{Q}}\vert $  > 3.5 MHz). This together with the information from 14N and 13C chemical shifts indicates that solid-state NMR is a powerful tool for providing atomic-level insights into anion species present in these compounds. The experimental NMR results are corroborated by high-level calculations with quantum chemistry methods.


2021 ◽  
pp. 1-11
Author(s):  
Haroon Khan ◽  
Muhammad Khalid Khan ◽  
Tanveer Ahmad ◽  
Muhammad Haris Zaib ◽  
Naheed Zafar ◽  
...  

Metallo-elements have both pharmacological and toxic effects on plants, animals and humans. These are considered as a major public health issue worldwide. In particular, heavy metals such as silver (Ag) and aluminum (Al) are environmentally widespread, and their relative toxicity can lead to numerous pathologies such as nephropathy, cancers, vascular and skin diseases. The goal of this study was to examine the behavioral effects of Ag and Al salts (i.e. Silver nitrate and Aluminum sulfate) on glutathione (GSH), a potent oxidant in biological mixtures. We also aimed to suggest mechanisms of action of thiolate complexed to these metallo-elements in competitive studies with Ellman’s reagent (5,5’-dithiobis(2-nitrobenzoic acid aka ESSE). By proton nuclear magnetic resonance (NMR) spectroscopy, detailed titrations were carried out for these metal thiols interactions in the presence of ESSE in order to elucidate first equilibrium and possible second equilibrium. We found by 1H NMR spectroscopy that GSH binds to Ag and Al, which highlighted possible in-vivo chelation mechanisms of GSH toward these toxic metallo-elements.


Author(s):  
Roland Riek ◽  
Simone Hornemann ◽  
Gerhard Wider ◽  
Rudi Glockshuber ◽  
Kurt Wüthrich

Sign in / Sign up

Export Citation Format

Share Document