ARTIFICIAL NEURAL NETWORK BASED FAULT DIAGNOSTICS OF ROLLING ELEMENT BEARINGS USING TIME-DOMAIN FEATURES

2003 ◽  
Vol 17 (2) ◽  
pp. 317-328 ◽  
Author(s):  
B. SAMANTA ◽  
K.R. AL-BALUSHI
Author(s):  
Saadi Laribi Souad ◽  
Bendiabdellah Azzedine ◽  
Samir Meradi

Bearings are essential components in the most electrical equipment. Procedures for monitoring the condition of bearings must be developed to prevent unexpected failure of these components during operation to avoid costly consequences. In this paper, the design of a monitoring system for the detection of rolling element-bearings failure is proposed. The method for detecting and locating this type of fault is carried out using advanced intelligent techniques based on a Perceptron Multilayer Artificial Neural Network (MLP-ANN); its database uses statistical indicators characterizing vibration signals. The effectiveness of the proposed method is illustrated using experimentally obtained bearing vibration data, and the results have shown good accuracy in detecting and locating defects.


2016 ◽  
Vol 6 (2) ◽  
pp. 38-46
Author(s):  
V Vital Rao ◽  
Ch Ratnam

In the condition monitoring of rotating machinery, vibration analysis of rolling element bearings is a popular diagnostic tool even though the vibration signals caused by bearing defects are distorted by other faults and mechanical noise, particularly in a hostile environment. The acoustic emission (AE) method is a non-destructive testing (NDT) technique used in structural health monitoring and its application for bearing diagnosis is gaining momentum as an alternative diagnostic tool due to its inherent high signal-to-noise (SNR) ratio. In earlier studies, although the researchers focused on different types of seeded defects, with random shape and size, and measured their vibration amplitude, they could not ascertain the correlation between the defect size and its respective vibration amplitude. A bearing test-rig was designed and established to study the various size defects in rolling element bearings. The experimental investigation reported in this paper predicts the bearing damage severity with respect to the AE amplitude level, using the artificial neural network (ANN) technique. This experiment includes seeded defects of various sizes, ie gradual increase of defect width on the outer race of radially-loaded cylindrical roller bearings at different parameters, and the data acquired through an acoustic emission probe. Experimental data was imported to the ANN, in which a multilayer perception model was used with a back-propagation algorithm using the input parameters of load, r/min and AE amplitude level and defect size as the output. The predicted defect sizes are compared with the actual seeded defect sizes and the percentage error was minimal. In this paper, an attempt has been made to predict the defect size with the help of AE and ANN techniques.


Author(s):  
S Mary Vasanthi ◽  
T Jayasree

The problem of classifying individual finger movements of one hand is focused in this article. The input electromyography signal is processed and eight time-domain features are extracted for classifying hand gestures. The classified finger movements are thumb, middle, index, little, ring, hand close, thumb index, thumb ring, thumb little and thumb middle and the hand grasps are palmar class, spherical class, hook class, cylindrical class, tip class and lateral class. Four state-of-the-art classifiers namely feed forward artificial neural network, cascaded feed forward artificial neural network, deep learning neural network and support vector machine are selected for this work to classify the finger movements and hand grasps using the extracted time-domain features. The experimental results show that the artificial neural network classifier is stabilized at 6 epochs for finger movement dataset and at 4 epochs for hand grasps dataset with low mean square error. However, the support vector machine classifier attains the maximum accuracy of 97.3077% for finger movement dataset and 98.875% for hand grasp dataset which is significantly greater than feed forward artificial neural network, cascaded feed forward artificial neural network and deep learning neural network classifiers.


Sign in / Sign up

Export Citation Format

Share Document