scholarly journals Evidence for Premotor Cortex Activity during Dynamic Visuospatial Imagery from Single-Trial Functional Magnetic Resonance Imaging and Event-Related Slow Cortical Potentials

NeuroImage ◽  
2001 ◽  
Vol 14 (2) ◽  
pp. 268-283 ◽  
Author(s):  
Claus Lamm ◽  
Christian Windischberger ◽  
Ulrich Leodolter ◽  
Ewald Moser ◽  
Herbert Bauer
2018 ◽  
Vol 30 (8) ◽  
pp. 1170-1184 ◽  
Author(s):  
Nicolas J. Bourguignon ◽  
Senne Braem ◽  
Egbert Hartstra ◽  
Jan De Houwer ◽  
Marcel Brass

Verbal instructions are central to humans' capacity to learn new behaviors with minimal training, but the neurocognitive mechanisms involved in verbally instructed behaviors remain puzzling. Recent functional magnetic resonance imaging (fMRI) evidence suggests that the right middle frontal gyrus and dorsal premotor cortex (rMFG-dPMC) supports the translation of symbolic stimulus–response mappings into sensorimotor representations. Here, we set out to (1) replicate this finding, (2) investigate whether this region's involvement is specific to novel (vs. trained) instructions, and (3) study whether rMFG-dPMC also shows differences in its (voxel) pattern response indicative of general cognitive processes of instruction implementation. Participants were shown instructions, which they either had to perform later or merely memorize. Orthogonal to this manipulation, the instructions were either entirely novel or had been trained before the fMRI session. Results replicate higher rMFG-dPMC activation levels during instruction implementation versus memorization and show how this difference is restricted to novel, but not trained, instruction presentations. Pattern similarity analyses at the voxel level further reveal more consistent neural pattern responses in rMFG-dPMC during the implementation of novel versus trained instructions. In fact, this more consistent neural pattern response seemed to be specific to the first instruction presentation and disappeared after the instruction had been applied once. These results further support a role of rMFG-dPMC in the implementation of novel task instructions and highlight potentially important differences in studying this region's gross activation levels versus (the consistency of) its response patterns.


2007 ◽  
Vol 13 (6) ◽  
pp. 1009-1020 ◽  
Author(s):  
SARAH H. CREEM-REGEHR ◽  
VALENTINA DILDA ◽  
APRIL E. VICCHRILLI ◽  
FREDERICK FEDERER ◽  
JAMES N. LEE

The influence of action knowledge associated with novel objects was investigated using functional magnetic resonance imaging. Participants were trained on complex actions associated with novel objects (“tools”) and had experience manipulating other visually similar novel objects (“shapes”). During scanning, participants viewed, imagined grasping, and imagined using the objects. Based on previous neuroimaging and neuropsychological findings, our primary goal was to examine frontal and parietal regions subserving action representations associated with visual objects, namely the left inferior parietal lobule (IPL), the left ventral premotor cortex (VPM) and the presupplementary motor cortex (pre-SMA). We predicted differences between the tool and shape stimuli, modulated also by task demands. In viewing, we found greater effect sizes in the left VPM and IPL for tools versus shapes. In grasping, there was similar activation with both object types. The largest differences existed in using, in which greater effect sizes were found for tools versus shapes in left IPL and pre-SMA, and marginally in the left VPM. We suggest that representations of tools extend beyond classically defined affordances and recruit processing about both graspability and known action plans in tasks involving visual memory, motor imagery, and motor execution. (JINS, 2007, 13, 1009–1020.)


2001 ◽  
Vol 21 (5) ◽  
pp. 592-607 ◽  
Author(s):  
Isabelle Loubinoux ◽  
Christophe Carel ◽  
Flamine Alary ◽  
Kader Boulanouar ◽  
Gérard Viallard ◽  
...  

The aim of the current study was to assess the reproducibility of functional magnetic resonance imaging (fMRI) brain activation signals in a sensorimotor task in healthy subjects. Because random or systematic changes are likely to happen when movements are repeated over time, the authors searched for time-dependent changes in the fMRI signal intensity and the extent of activation within and between sessions. Reproducibility was studied on a sensorimotor task called “the active task” that includes a motor output and a sensory feedback, and also on a sensory stimulation called “the passive task” that assessed the sensory input alone. The active task consisted of flexion and extension of the right hand. The subjects had performed it several times before fMRI scanning so that it was well learned. The passive task consisted of a calibrated passive flexion and extension of the right wrist. Tasks were 1 Hz-paced. The control state was rest. Subjects naïve to the MRI environment and non–MRI-naïve subjects were studied. Twelve MRI-naïve subjects underwent 3 fMRI sessions separated by 5 hours and 49 days, respectively. During MRI scanning, they performed the active task. Six MRI-naïve subjects underwent 2 fMRI sessions with the passive task 1 month apart. Three non–MRI-naïve subjects performed twice an active 2-Hz self-paced task. The data were analyzed with SPM96 software. For within-session comparison, for active or passive tasks, good reproducibility of fMRI signal activation was found within a session (intra-and interrun reproducibility) whether it was the first, second, or third session. Therefore, no within-session habituation was found with a passive or a well-learned active task. For between-session comparison, for MRI-naïve or non–MRI-naïve subjects, and with the active or the passive task, activation was increased in the contralateral premotor cortex and in ispsilateral anterior cerebellar cortex but was decreased in the primary sensorimotor cortex, parietal cortex, and posterior supplementary motor area at the second session. The lower cortical signal was characterized by reduced activated areas with no change in maximum peak intensity in most cases. Changes were partially reversed at the third session. Part of the test–retest effect may come from habituation of the MRI experiment context. Less attention and stress at the second and third sessions may be components of the inhibition of cortical activity. Because the changes became reversed, the authors suggest that, beyond the habituation process, a learning process occurred that had nothing to do with procedural learning, because the tasks were well learned or passive. A long-term memory representation of the sensorimotor task, not only with its characteristics (for example, amplitude, frequency) but also with its context (fMRI), can become integrated into the motor system along the sessions. Furthermore, the pattern observed in the fMRI signal changes might evoke a consolidation process.


2008 ◽  
Vol 100 (5) ◽  
pp. 2627-2639 ◽  
Author(s):  
G. Króliczak ◽  
T. D. McAdam ◽  
D. J. Quinlan ◽  
J. C. Culham

We tested whether the control of real actions in an ever-changing environment would show any dependence on prior actions elicited by instructional cues a few seconds before. To this end, adaptation of the functional magnetic resonance imaging signal was measured while human participants sequentially grasped three-dimensional objects in an event-related design, using grasps oriented along the same or a different axis of either the same or a different object shape. We found that the bilateral anterior intraparietal sulcus, an area previously linked to the control of visually guided grasping, along with other areas of the intraparietal sulcus, the left supramarginal gyrus, and the right mid superior parietal lobe showed clear adaptation following both repeated grasps and repeated objects. In contrast, the left ventral premotor cortex and the bilateral dorsal premotor cortex, the two premotor areas often linked to response selection, action planning, and execution, showed only grasp-selective adaptation. These results suggest that, even in real action guidance, parietofrontal areas demonstrate differential involvement in visuomotor processing dependent on whether the action or the object has been previously experienced.


Sign in / Sign up

Export Citation Format

Share Document