fmri signal
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 42)

H-INDEX

40
(FIVE YEARS 5)

Author(s):  
Obada Al Zoubi ◽  
Ahmad Mayeli ◽  
Masaya Misaki ◽  
Aki Tsuchiyagaito ◽  
Vadim Zotev ◽  
...  

Abstract Objective. Electroencephalography microstates (EEG-ms), which reflect a large topographical representation of coherent electrophysiological brain activity, are widely adopted to study cognitive processes mechanisms and aberrant alterations in brain disorders. EEG-ms topographies are quasi-stable lasting between 60-120 milliseconds. Some evidence suggests that EEG-ms are the electrophysiological signature of resting-state networks (RSNs). However, the spatial and functional interpretation of EEG-ms and their association with functional MRI (fMRI) remains unclear. Approach. In a large cohort of healthy subjects (n = 52), we conducted several statistical and machine learning approaches analyses on the association among EEG-ms spatio-temporal dynamics and the blood-oxygenation-level dependent (BOLD) simultaneous EEG-fMRI data using statistical and machine learning approaches. Main results. Our results using a generalized linear model unraveled that EEG-ms transitions were largely and negatively associated with blood-oxygenation-level dependent (BOLD) signals in the somatomotor, visual, dorsal attention, and ventral attention fMRI networks with limited association within the default mode network. Additionally, a novel recurrent neural network (RNN) confirmed the association between EEG-ms transitioning and fMRI signal while revealing that EEG-ms dynamics can predict BOLD signals and vice versa. Significance. Results suggest that EEG-ms transitions may represent the deactivation of fMRI RSNs and provide evidence that both modalities can measure common aspects of undergoing brain neuronal activities. Moreover, our results may help to better understand the electrophysiological interpretation of EEG-ms and solve several contradicting findings in the literature.


NeuroImage ◽  
2021 ◽  
pp. 118793
Author(s):  
Yi Chen ◽  
Sangcheon Choi ◽  
Hang Zeng ◽  
Kengo Takahashi ◽  
Chunqi Qian ◽  
...  

2021 ◽  
Author(s):  
Mauro DiNuzzo ◽  
Silvia Mangia ◽  
Marta Moraschi ◽  
Daniele Mascali ◽  
Gisela E. Hagberg ◽  
...  

Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) in primary visual cortex (V1) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering is perceived, without any relation with behavioral or physiological variables. Wheras the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering indicating increased output from V1. These results indicate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD-fMRI.


2021 ◽  
Vol 7 (30) ◽  
pp. eabf2709
Author(s):  
Ryan V. Raut ◽  
Abraham Z. Snyder ◽  
Anish Mitra ◽  
Dov Yellin ◽  
Naotaka Fujii ◽  
...  

We propose and empirically support a parsimonious account of intrinsic, brain-wide spatiotemporal organization arising from traveling waves linked to arousal. We hypothesize that these waves are the predominant physiological process reflected in spontaneous functional magnetic resonance imaging (fMRI) signal fluctuations. The correlation structure (“functional connectivity”) of these fluctuations recapitulates the large-scale functional organization of the brain. However, a unifying physiological account of this structure has so far been lacking. Here, using fMRI in humans, we show that ongoing arousal fluctuations are associated with global waves of activity that slowly propagate in parallel throughout the neocortex, thalamus, striatum, and cerebellum. We show that these waves can parsimoniously account for many features of spontaneous fMRI signal fluctuations, including topographically organized functional connectivity. Last, we demonstrate similar, cortex-wide propagation of neural activity measured with electrocorticography in macaques. These findings suggest that traveling waves spatiotemporally pattern brain-wide excitability in relation to arousal.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesco Sammartino ◽  
Paul Taylor ◽  
Gang Chen ◽  
Richard C. Reynolds ◽  
Daniel Glen ◽  
...  

Object: A real-time functional magnetic resonance imaging (fMRI) feedback during ventral intermediate nucleus (VIM) deep brain stimulation (DBS) under general anesthesia (or “asleep” DBS) does not exist. We hypothesized that it was feasible to acquire a reliable and responsive fMRI during asleep VIM DBS surgery.Methods: We prospectively enrolled 10 consecutive patients who underwent asleep DBS for the treatment of medication-refractory essential tremor. Under general anesthesia, we acquired resting-state functional MRI immediately before and after the cannula insertion. Reliability was determined by a temporal signal-to-noise-ratio >100. Responsiveness was determined based on the fMRI signal change upon insertion of the cannula to the VIM.Results: It was feasible to acquire reliable fMRI during asleep DBS surgery. The fMRI signal was responsive to the brain cannula insertion, revealing a reduction in the tremor network's functional connectivity, which did not reach statistical significance in the group analysis.Conclusions: It is feasible to acquire a reliable and responsive fMRI signal during asleep DBS. The acquisition steps and the preprocessing pipeline developed in these experiments will be useful for future investigations to develop fMRI-based feedback for asleep DBS surgery.


2021 ◽  
Vol 13 ◽  
Author(s):  
Lars Michels ◽  
Florian Riese ◽  
Rafael Meyer ◽  
Andrea M. Kälin ◽  
Sandra E. Leh ◽  
...  

Cognitive impairment indicates disturbed brain physiology which can be due to various mechanisms including Alzheimer's pathology. Combined functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings (EEG-fMRI) can assess the interplay between complementary measures of brain activity and EEG changes to be localized to specific brain regions. We used a two-step approach, where we first examined changes related to a syndrome of mild cognitive impairment irrespective of pathology and then studied the specific impact of amyloid pathology. After detailed clinical and neuropsychological characterization as well as a positron emission tomography (PET) scans with the tracer 11-[C]-Pittsburgh Compound B to estimate cerebral amyloid deposition, 14 subjects with mild cognitive impairment (MCI) (mean age 75.6 SD: 8.9) according to standard criteria and 21 cognitively healthy controls (HCS) (mean age 71.8 SD: 4.2) were assessed with EEG-fMRI. Thalamo-cortical alpha-fMRI signal coupling was only observed in HCS. Additional EEG-fMRI signal coupling differences between HCS and MCI were observed in parts of the default mode network, salience network, fronto-parietal network, and thalamus. Individuals with significant cerebral amyloid deposition (amyloid-positive MCI and HCS combined compared to amyloid-negative HCS) displayed abnormal EEG-fMRI signal coupling in visual, fronto-parietal regions but also in the parahippocampus, brain stem, and cerebellum. This finding was paralleled by stronger absolute fMRI signal in the parahippocampus and weaker absolute fMRI signal in the inferior frontal gyrus in amyloid-positive subjects. We conclude that the thalamocortical coupling in the alpha band in HCS more closely reflects previous findings observed in younger adults, while in MCI there is a clearly aberrant coupling in several networks dominated by an anticorrelation in the posterior cingulate cortex. While these findings may broadly indicate physiological changes in MCI, amyloid pathology was specifically associated with abnormal fMRI signal responses and disrupted coupling between brain oscillations and fMRI signal responses, which especially involve core regions of memory: the hippocampus, para-hippocampus, and lateral prefrontal cortex.


2021 ◽  
Author(s):  
Yi Chen ◽  
Qi Wang ◽  
Sangcheon Choi ◽  
Hang Zeng ◽  
Kengo Takahashi ◽  
...  

Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. Acquiring fMRI signal with high spatiotemporal resolution is needed to bridge cross-scale functional dynamics, but SNR of targeted cortical regions is a limiting factor. We have developed a multi-modal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2-3 fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multi-modal fMRI mapping schemes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johan Baijot ◽  
Stijn Denissen ◽  
Lars Costers ◽  
Jeroen Gielen ◽  
Melissa Cambron ◽  
...  

AbstractGraph-theoretical analysis is a novel tool to understand the organisation of the brain.We assessed whether altered graph theoretical parameters, as observed in multiple sclerosis (MS), reflect pathology-induced restructuring of the brain's functioning or result from a reduced signal quality in functional MRI (fMRI). In a cohort of 49 people with MS and a matched group of 25 healthy subjects (HS), we performed a cognitive evaluation and acquired fMRI. From the fMRI measurement, Pearson correlation-based networks were calculated and graph theoretical parameters reflecting global and local brain organisation were obtained. Additionally, we assessed metrics of scanning quality (signal to noise ratio (SNR)) and fMRI signal quality (temporal SNR and contrast to noise ratio (CNR)). In accordance with the literature, we found that the network parameters were altered in MS compared to HS. However, no significant link was found with cognition. Scanning quality (SNR) did not differ between both cohorts. In contrast, measures of fMRI signal quality were significantly different and explained the observed differences in GTA parameters. Our results suggest that differences in network parameters between MS and HS in fMRI do not reflect a functional reorganisation of the brain, but rather occur due to reduced fMRI signal quality.


2021 ◽  
Author(s):  
Sangcheon Choi ◽  
Yi Chen ◽  
Hang Zeng ◽  
Bharat Biswal ◽  
Xin Yu

ABSTRACTDespite extensive studies detecting blood-oxygen-level-dependent (BOLD) fMRI signals across two hemispheres to present cognitive processes in normal and diseased brains, the role of corpus callosum (CC) to mediate interhemispheric functional connectivity remains controversial. Several studies show maintaining low-frequency fluctuation of resting-state (rs)-fMRI signals in homotopic brain areas of acallosal humans and post-callosotomy animals, raising the question: how can we specify the circuit-specific rs-fMRI signal fluctuation from other sources? To address this question, we have developed a bilateral line-scanning fMRI (BiLS) method to detect bilateral laminar BOLD fMRI signals from symmetric cortical regions with high spatial (100 μm) and temporal (100 ms) resolution in rodents under anesthesia. In addition to ultra-slow oscillation (0.01-0.02 Hz) patterns across all cortical layers, a layer-specific bilateral coherence pattern was observed with a peak at Layer (L)2/3, where callosal projection neurons are primarily located and reciprocal transcallosal projections are received. In particular, the L2/3-specific coherence pattern showed a peak at 0.05 Hz based on the stimulation paradigm, depending on the interhemispheric CC activation. Meanwhile, the L2/3-specific rs-fMRI coherence was peaked at 0.08-0.1Hz which was independent of the varied ultra-slow oscillation patterns (0.01-0.02 Hz) presumably involved with global neuromodulation. This work provides a unique laminar fMRI mapping scheme to characterize the CC-mediated evoked fMRI and frequency-dependent rs-fMRI responses, presenting crucial evidence to distinguish the circuit-specific fMRI signal fluctuations across two hemispheres.Significance statementLaminar fMRI is a promising method to better understand neuronal circuit contribution to functional connectivity (FC) across cortical layers. Here, we developed a bilateral line-scanning fMRI method, allowing the detection of laminar-specific BOLD-fMRI signals from homologous cortical regions in rodents with high spatial and temporal resolution. Laminar coherence patterns of both evoked and rs-fMRI signals revealed that CC-dependent interhemispheric FC is significantly strong at Layer 2/3, where callosal projection neurons are primarily located. The Layer 2/3-specific rs-fMRI coherence is independent of ultra-slow oscillation based on global neuromodulation, distinguishing the circuit-specific rs-fMRI signal fluctuation from different regulatory sources.


Sign in / Sign up

Export Citation Format

Share Document