Inhibitory Effect of Loratadine on Leukotriene B4Production by Neutrophils Either Alone or During Interaction with Human Airway Epithelial Cells

1998 ◽  
Vol 11 (4) ◽  
pp. 245-252 ◽  
Author(s):  
C. Amsellem ◽  
W. Czarlewski ◽  
M. Lagarde ◽  
Y. Pachéco
2007 ◽  
Vol 292 (5) ◽  
pp. L1304-L1312 ◽  
Author(s):  
Sarah K. Inglis ◽  
Sean G. Brown ◽  
Maree J. Constable ◽  
Niall McTavish ◽  
Richard E. Olver ◽  
...  

By analysis of whole cell membrane currents in Na+-absorbing H441 human airway epithelial cells, we have identified a K+ conductance ( GK) resistant to Ba2+ but sensitive to bupivacaine or extracellular acidification. In polarized H441 monolayers, we have demonstrated that bupivacaine, lidocaine, and quinidine inhibit basolateral membrane K+ current ( IBl) whereas Ba2+ has only a weak inhibitory effect. IBl was also inhibited by basolateral acidification, and, although subsequent addition of bupivacaine caused a further fall in IBl, acidification had no effect after bupivacaine, demonstrating that cells grown under these conditions express at least two different bupivacaine-sensitive K+ channels, only one of which is acid sensitive. Basolateral acidification also inhibited short-circuit current ( ISC), and basolateral bupivacaine, lidocaine, quinidine, and Ba2+ inhibited ISC at concentrations similar to those needed to inhibit IBl, suggesting that the K+ channels underlying IBl are part of the absorptive mechanism. Analyses using RT-PCR showed that mRNA encoding several two-pore domain K+ (K2P) channels was detected in cells grown under standard conditions (TWIK-1, TREK-1, TASK-2, TWIK-2, KCNK-7, TASK-3, TREK-2, THIK-1, and TALK-2). We therefore suggest that K2P channels underlie GK in unstimulated cells and so maintain the driving force for Na+ absorption. Since this ion transport process is vital to lung function, K2P channels thus play an important but previously undocumented role in pulmonary physiology.


1999 ◽  
Vol 277 (3) ◽  
pp. L465-L471 ◽  
Author(s):  
Alessandro Celi ◽  
Silvana Cianchetti ◽  
Stefano Petruzzelli ◽  
Stefano Carnevali ◽  
Filomena Baliva ◽  
...  

Intercellular adhesion molecule-1 (ICAM-1) is the only inducible adhesion receptor for neutrophils identified in bronchial epithelial cells. We stimulated human airway epithelial cells with various agonists to evaluate whether ICAM-1-independent adhesion mechanisms could be elicited. Phorbol 12-myristate 13-acetate (PMA) stimulation of cells of the alveolar cell line A549 caused a rapid, significant increase in neutrophil adhesion from 11 ± 3 to 49 ± 7% (SE). A significant increase from 17 ± 4 to 39 ± 6% was also observed for neutrophil adhesion to PMA-stimulated human bronchial epithelial cells in primary culture. Although ICAM-1 expression was upregulated by PMA at late time points, it was not affected at 10 min when neutrophil adhesion was already clearly enhanced. Antibodies to ICAM-1 had no effect on neutrophil adhesion. In contrast, antibodies to the leukocyte integrin β-chain CD18 totally inhibited the adhesion of neutrophils to PMA-stimulated epithelial cells. These results demonstrate that PMA stimulation of human airway epithelial cells causes an increase in neutrophil adhesion that is not dependent on ICAM-1 upregulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadzeya Marozkina ◽  
Laura Smith ◽  
Yi Zhao ◽  
Joe Zein ◽  
James F. Chmiel ◽  
...  

AbstractEndothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air–liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbβ expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, β, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbβ gene expression were associated with lower FEV1 in asthma. Both Hbβ knockdown and overexpression affected cell morphology. Hbβ and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbβ gene expression were associated with airflow obstruction. Hbβ and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.


2016 ◽  
Vol 1858 (2) ◽  
pp. 210-219 ◽  
Author(s):  
Filippo Ingoglia ◽  
Rossana Visigalli ◽  
Bianca Maria Rotoli ◽  
Amelia Barilli ◽  
Benedetta Riccardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document