cigarette smoke
Recently Published Documents


TOTAL DOCUMENTS

7948
(FIVE YEARS 1403)

H-INDEX

120
(FIVE YEARS 14)

2022 ◽  
Vol 103 ◽  
pp. 108445
Author(s):  
Guochun Ou ◽  
Mingmei Zhu ◽  
Yufang Huang ◽  
Wen Luo ◽  
Jie Zhao ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 124-129
Author(s):  
Rahmat Haji Saeni ◽  
Erdiawati Arief

Background: Nutrition in the first five years of life is very important because at this time physical and brain development is most rapid. Nutrition at this time will affect future developments (Data, Information and Health, 2016). Anthropometric monitoring is also needed, as an initial screening of nutritional problems, including stunting and wasting, to facilitate interventions to be carried out to prevent long-term effects and the next stage in the toddler development cycle (Ramos, Dumith and César, 2015). The research method used in this study was case control, while the research was conducted from April to September 2020. Purpose: This study aims to determine the relationship between biopsychosocial and stunting in children under five years in the stunting locus area, West Tapalang District. Method: This study uses a case control research design with the number of respondents each as many as 57 people. The sampling method used is total sampling Results: There is a statistical relationship between exclusive breastfeeding and the incidence of stunting. The p value is 0.01 with an OR value of 0.38. Meanwhile, maternal height has a p value of 0.84 (OR 1.08), family support has a p value of 0.49 (OR 0.49), exposure to cigarette smoke has a p value of 0.09 (OR 0.31) and socioeconomic has no statistical relationship. Conclusion: There is a relationship between exclusive breastfeeding and the incidence of stunting. Meanwhile, maternal height, family support, and exposure to cigarette smoke did not show a statistical relationship with the incidence of stunting Key words: Stunting, Toddler, psychosocial.


2022 ◽  
Author(s):  
Qizhi Wang ◽  
Min Liu ◽  
Yu Liu ◽  
Zhen Zhang ◽  
Zhengping Bai

Abstract Objective: To investigate the effects of cigarette smoke extract (CSE) and lipopolysaccharide (LPS) on the activity and pyroptosis of pulmonary microvascular endothelial cells (PMVECs). Methods: PMVECs were cultured without treatment or with CSE (1%-25%), LPS, or CSE+LPS. Cell viability was detected using the CCK8 method. Apoptosis was evaluated by flow cytometry. Cell morphology was evaluated using optical microscopy. The content of IL-1β and IL-18 was measured by ELISA. Results: CSE decreased cell viability in a dose-dependent manner. The cells in the CSE+LPS group showed the most obvious cytomorphological changes and the highest pyroptosis rate under the microscope. Flow cytometry showed that the CSE and LPS groups showed higher apoptosis rates than the blank group; the apoptotic rate in the CSE+LPS group was even higher (P<0.01). Compared with the bkank group, the levels of IL-18 and IL-1β in the cell supernatant of the CSE, LPS, and CSE+LPS groups increased significantly, with significant differences (P<0.01). There were no differences between the CSE and LPS groups (P>0.05). Compared with the CSE and LPS groups, the CSE+LPS group had higher IL-18 and IL-1β (P<0.01). Conclusion: The effect of CSE on cell viability is dose-dependent. CSE+LPS can induce cell pyroptosis and increase the levels of inflammatory cytokines in PMVECs. These observations demonstrated that pyroptosis caused by CSE and LPS might play an important role in pulmonary vascular remodeling.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Zhixing Zhu ◽  
Xihua Lian ◽  
Xiaoshan Su ◽  
Weijing Wu ◽  
Yiming Zeng ◽  
...  

Abstract Background Chronic obstructive pulmonary disease (COPD) is a frequently encountered disease condition in clinical practice mainly caused by cigarette smoke (CS). The aim of this study was to investigate the protective roles of human adipose-derived stem cells-derived exosomes (ADSCs-Exo) in CS-induced lung inflammation and injury and explore the underlying mechanism by discovering the effects of ADSCs-Exo on alveolar macrophages (AMs) pyroptosis. Methods ADSCs were isolated from human adipose tissues harvested from three healthy donors, and then ADSCs-Exo were isolated. In vivo, 24 age-matched male C57BL/6 mice were exposed to CS for 4 weeks, followed by intratracheal administration of ADSCs-Exo or phosphate buffered saline. In vitro, MH-S cells, derived from mouse AMs, were stimulated by 2% CS extract (CSE) for 24 h, followed by the treatment of ADSCs-Exo or phosphate buffered saline. Pulmonary inflammation was analyzed by detecting pro-inflammatory cells and mediators in the bronchoalveolar lavage fluid. Lung histology was assessed by hematoxylin and eosin staining. Mucus production was determined by Alcian blue-periodic acid-Schiff staining. The profile of AMs pyroptosis was evaluated by detecting the levels of pyroptosis-indicated proteins. The inflammatory response in AMs and the phagocytic activity of AMs were also investigated. Results In mice exposed to CS, the levels of pro-inflammatory cells and mediators were significantly increased, mucus production was markedly increased and lung architecture was obviously disrupted. AMs pyroptosis was elevated and AMs phagocytosis was inhibited. However, the administration of ADSCs-Exo greatly reversed these alterations caused by CS exposure. Consistently, in MH-S cells with CSE-induced properties modelling those found in COPD, the cellular inflammatory response was elevated, the pyroptotic activity was upregulated while the phagocytosis was decreased. Nonetheless, these abnormalities were remarkably alleviated by the treatment of ADSCs-Exo. Conclusions ADSCs-Exo effectively attenuate CS-induced airway mucus overproduction, lung inflammation and injury by inhibiting AMs pyroptosis. Therefore, hADSCs-Exo may be a promising cell-free therapeutic candidate for CS-induced lung inflammation and injury.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Jinhyung Rho ◽  
Chang-Seob Seo ◽  
Eun-Ju Hong ◽  
Eun Bok Baek ◽  
Eunhye Jung ◽  
...  

Background. Chronic obstructive pulmonary disease (COPD) refers to a lung disorder associated with symptoms of dyspnea, cough, and sputum production. Traditionally, Yijin-tang (YJT), a mixture of Pinellia ternate, Poria cocos, ginger, Chinese liquorice, and tangerine peel, has been prescribed for the treatment of respiratory system diseases caused by dampness phlegm. This experiment investigated the therapeutic effect of YJT in a mouse model of cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD. Methods. COPD was induced by exposing mice to CS for 1 hour per day for 8 weeks, with intranasal delivery of LPS on weeks 1, 3, 5, and 7. YJT was administered at doses of 100 and 200 mg/kg 1 hour before CS exposure for the last 4 weeks. Results. YJT significantly suppressed CS- and LPS-induced increases in inflammatory cell counts and reduced interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) levels in bronchoalveolar lavage fluid (BALF) and lung tissue. In addition, YJT not only decreased airway wall thickness, average alveolar intercept, and lung fibrosis, but it also suppressed the expression of matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-B (TGF-β) and collagen deposition. Moreover, YJT suppressed phosphorylation of nuclear factor-kappa B (NF-κB) as well as expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Conclusion. Collectively, our findings show that YJT attenuates respiratory inflammation and airway remodeling caused by CS and LPS exposure; therefore, therapeutic applications in COPD can be considered.


Author(s):  
Yafei Rao ◽  
Xiaoyan Gai ◽  
Yanqing Le ◽  
Jing Xiong ◽  
Yujia Liu ◽  
...  

AimSmoker COPD patients with chest radiological signs of prior tuberculosis (TB) showed more severe lung damage, but the mechanisms remain unclear. Emerging evidence has implicated NK cells in the pathogenesis of both COPD and TB. The purpose of this study was to delineate the profile and cytokine production of NK-cell subpopulations and their immunometabolic changes after exposure to both cigarette smoke (CS) and Mycobacterium tuberculosis(MTB).MethodsWe profiled NK-cell subpopulations in terms of percentage and cytokine production by flow cytometry in smoker patients with pulmonary TB (PTB). In an in vitro coexposure model, we investigated proinflammatory cytokine production, glycolytic influx, and oxidative phosphorylation of NK cells under CS extract (CSE) and PPD costimulation.ResultsPeripheral blood NK cells in smoker patients with active PTB (CS+PTB group) showed altered proportion of subpopulations and excessive proinflammatory cytokine expressions. In vitro, CSE- and PPD-coexposed NK-92 cells displayed enhanced proinflammatory cytokine production, concurrent with decreased glycolytic influx and oxidative phosphorylation.ConclusionSmoker patients with active PTB showed enhanced proinflammatory cytokine expression within altered NK cell subpopulations. CSE and PPD coexposure induced heightened cytokine production concurrent with impaired cell metabolism in NK cells. These novel data suggest a potential role of NK cells in the pathogenesis of lung injury in subjects with coexposure to CS and TB.


2022 ◽  
Vol 417 ◽  
pp. 113591
Author(s):  
Walter Royal ◽  
Joseph Bryant ◽  
Harry Davis ◽  
Ming Guo

2022 ◽  
Vol Volume 17 ◽  
pp. 33-42
Author(s):  
Gracielle Vieira Ramos ◽  
Ivo Vieira de Sousa Neto ◽  
Alessandra Choqueta Toledo-Arruda ◽  
Rita de Cassia Marqueti ◽  
Rodolfo P Vieira ◽  
...  

2022 ◽  
Vol Volume 17 ◽  
pp. 117-140
Author(s):  
Andrew J Ghio ◽  
Elizabeth N Pavlisko ◽  
Victor L Roggli ◽  
Nevins W Todd ◽  
Rahul G Sangani

Sign in / Sign up

Export Citation Format

Share Document