417: Cyclosporine does not penetrate, but accumulates at high concentrations within, differentiated human airway epithelial cells in vitro: Possible implications for the use of inhaled cyclosporine

2007 ◽  
Vol 26 (2) ◽  
pp. S210
Author(s):  
R. Aris ◽  
P. McNeillie ◽  
O. Olusesi ◽  
S. Thomas ◽  
M. Paine ◽  
...  
1994 ◽  
Vol 266 (6) ◽  
pp. L612-L619 ◽  
Author(s):  
R. B. Devlin ◽  
K. P. McKinnon ◽  
T. Noah ◽  
S. Becker ◽  
H. S. Koren

Acute exposure of animals and humans to ozone results in decrements in lung function, development of airway hyperreactivity, inflammation, edema, damage to pulmonary cells, and production of several compounds with tissue damaging, fibrinogenic or fibrotic potential. The contribution of airway epithelial cells and alveolar macrophages to these processes is unclear. In this study we have directly exposed human alveolar macrophages and human airway epithelial cells to ozone in vitro and measured the cytotoxic effects of ozone, as well as the production of the inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8), and fibronectin, all of which are substantially elevated in the bronchoalveolar lavage fluid of humans exposed to ozone. Cells were grown on rigid, collagen-impregnated filter supports, and the interaction of cells with ozone facilitated by exposing them to the gas with medium below the support but no medium on top of the cells. The results show that, although macrophages are much more sensitive to ozone than epithelial cells, they do not produce increased amounts of IL-6, IL-8, or fibronectin following ozone exposure. In contrast, epithelial cells produce substantially more of all three proteins following ozone exposure, and both IL-6 and fibronectin are secreted vectorially. An immortalized human airway epithelial cell line (BEAS 2B) was used in these experiments since human airway epithelial cells are infrequently available for in vitro studies. Data from this study extend previous findings which suggest that the BEAS cell line is a useful model to study the interaction between airway epithelial cells and environmental toxicants.


1992 ◽  
Vol 262 (2) ◽  
pp. L183-L191 ◽  
Author(s):  
C. M. Liedtke

A role for phospholipase C (PLC) hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) as a mechanism of alpha 1-adrenergic signal transduction in human airway epithelial cells (AEC) was investigated in isolated normal tracheal and cystic fibrosis (CF) nasal epithelial cells grown in in vitro culture and prelabeled with 3 muCi myo-[3H]inositol/ml for 72 h. Breakdown of polyphosphoinositides was measured using thin-layer chromatography to detect phosphatidylinositol, phosphatidylinositol 4-phosphate (PIP), and PIP2. Inositol phosphates were separated by ion-exchange column chromatography. In normal AEC, the addition of the endogenous catecholamine l-epinephrine produced a rapid, transient accumulation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2) and breakdown of PIP and PIP2. IP3 increased 1.7-fold and IP2 1.6-fold after 20 and 40 s, respectively. A maximal decrease of 35% PIP2 and 30% PIP is observed after 20 and 40 s, respectively. The effects of l-epinephrine were not blocked by the beta-adrenergic antagonist dl-propranolol but were mimicked by the alpha 1-adrenergic agonist methoxamine. Prazosin, an alpha 1-adrenergic antagonist, and pertussis toxin (PTX) blocked the effects of l-epinephrine and methoxamine. Addition of l-epinephrine and methoxamine to CF nasal epithelial cells also induced prazosin-sensitive polyphosphoinositide breakdown and inositol phosphate accumulation. A 2.2-fold accumulation of IP3 was observed after 10 s and 2.0-fold increase in IP2 after 20 s. Maximal decreases of 32% PIP2 and 23% PIP levels were observed after 20-s incubation with l-epinephrine. PTX reduced the effects of l-epinephrine and significantly blocked the effects of methoxamine.(ABSTRACT TRUNCATED AT 250 WORDS)


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 351 ◽  
Author(s):  
Brajesh K. Singh ◽  
Ashley L. Cooney ◽  
Sateesh Krishnamurthy ◽  
Patrick L. Sinn

Extracellular vesicles (EVs) are a class of naturally occurring secreted cellular bodies that are involved in long distance cell-to-cell communication. Proteins, lipids, mRNA, and miRNA can be packaged into these vesicles and released from the cell. This information is then delivered to target cells. Since EVs are naturally adapted molecular messengers, they have emerged as an innovative, inexpensive, and robust method to deliver therapeutic cargo in vitro and in vivo. Well-differentiated primary cultures of human airway epithelial cells (HAE) are refractory to standard transfection techniques. Indeed, common strategies used to overexpress or knockdown gene expression in immortalized cell lines simply have no detectable effect in HAE. Here we use EVs to efficiently deliver siRNA or protein to HAE. Furthermore, EVs can deliver CFTR protein to cystic fibrosis donor cells and functionally correct the Cl− channel defect in vitro. EV-mediated delivery of siRNA or proteins to HAE provides a powerful genetic tool in a model system that closely recapitulates the in vivo airways.


2020 ◽  
pp. 00705-2020
Author(s):  
Abiram Chandiramohan ◽  
Mohammedhossein Dabaghi ◽  
Jennifer A. Aguiar ◽  
Nicholas Tiessen ◽  
Mary Stewart ◽  
...  

Accessible in vitro models recapitulating the human airway that are amenable to study whole cannabis smoke exposure are needed for immunological and toxicological studies that inform public health policy and recreational cannabis use. In the present study, we developed and validated a novel 3D printed In Vitro Exposure System (IVES) that can be directly applied to study the effect of cannabis smoke exposure on primary human bronchial epithelial cells.Using commercially available design software and a 3D printer, we designed a four-chamber Transwell® insert holder for exposures to whole smoke. COMSOL® Multiphysics software was used to model gas distribution, concentration gradients, velocity profile and shear stress within IVES. Following simulations, primary human bronchial epithelial cells cultured at air-liquid interface on Transwell® inserts were exposed to whole cannabis smoke using a modified version of the Foltin Puff procedure. Following 24 h, outcome measurements included cell morphology, epithelial barrier function, lactate dehydrogenase (LDH) levels, cytokine and gene expression.Whole smoke delivered through IVES possesses velocity profiles consistent with uniform gas distribution across the four chambers and complete mixing. Airflow velocity ranged between 1.0–1.5 µm s−1 and generated low shear stresses (≪ 1 Pa). Human airway epithelial cells exposed to cannabis smoke using IVES showed changes in cell morphology and disruption of barrier function without significant cytotoxicity. Cannabis smoke elevated IL-1 family cytokines and elevated CYP1A1 and CYP1B1 expression relative to control, validating IVES smoke exposure impacts in human airway epithelial cells at a molecular level.The growing legalisation of cannabis on a global scale must be paired with research related to potential health impacts of lung exposures. IVES represents an accessible, open-source, exposure system that can be used to model varying types of cannabis smoke exposures with human airway epithelial cells grown under air-liquid interface culture conditions.


Sign in / Sign up

Export Citation Format

Share Document