Regulation of E-Cadherin-Mediated Cell-Cell Adhesion by Rho Family GTPases

Author(s):  
Masato Nakagawa ◽  
Nanae Izumi ◽  
Kozo Kaibuchi
2001 ◽  
Vol 2 (12) ◽  
pp. 887-897 ◽  
Author(s):  
Masaki Fukata ◽  
Kozo Kaibuchi

1999 ◽  
Vol 11 (5) ◽  
pp. 591-596 ◽  
Author(s):  
Kozo Kaibuchi ◽  
Shinya Kuroda ◽  
Masaki Fukata ◽  
Masato Nakagawa

2003 ◽  
pp. 121-128
Author(s):  
Masaki Fukata ◽  
Masato Nakagawa ◽  
Shinya Kuroda ◽  
Kozo Kaibuchi

2001 ◽  
Vol 114 (4) ◽  
pp. 695-707 ◽  
Author(s):  
I. Grosheva ◽  
M. Shtutman ◽  
M. Elbaum ◽  
A.D. Bershadsky

The molecular basis for contact inhibition of cell locomotion is still largely unknown. Cadherins, the major receptors mediating cell-cell adhesion, associate in the cytoplasm with armadillo family proteins, including beta- and gamma-catenin and p120 catenin (p120ctn). E-cadherin-mediated contact formation was shown to inhibit cellular motility. We examine whether p120ctn may have a role in this regulation. We show here that overexpression of p120ctn in fibroblasts and epithelial cells induces pronounced changes in cell shape, motility and adhesion to the extracellular matrix. p120ctn-transfected cells display increased filopodial/lamellipodial activity, decreased contractility and focal adhesion formation, and augmented migratory ability. These effects of p120ctn are mediated by small GTPases of the Rho family. Direct assessment of the activity of these GTPases in cells expressing a 5-fold higher level of p120ctn as compared to non-transfected control cells revealed significant augmentation of Cdc42 and Rac activity. Moreover, co-transfection of p120ctn with dominant-negative Cdc42 and Rac, or constitutively active Rho suppressed morphological effects of p120ctn. Confocal immunofluorescence visualization of the distribution of endogenous p120ctn in dense cultures showed that formation of cadherin-mediated cell-cell contacts is accompanied by sequestering of p120ctn to the junction regions. In sparse cultures p120ctn is distributed over the cytoplasm. Co-transfection with an excess of E-cadherin leads to sequestration of exogenous p120ctn to cell-cell junctions or to small cadherin-containing vesicles, and abolishes p120ctn effects on cell morphology. Thus, p120ctn may couple the formation and disruption of cadherin-mediated contacts with regulation of cell motility by triggering pathway(s) affecting Rho family GTPases.


2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Sarah Alsharif ◽  
Pooja Sharma ◽  
Karina Bursch ◽  
Rachel Milliken ◽  
Van Lam ◽  
...  

2017 ◽  
Vol 114 (29) ◽  
pp. E5835-E5844 ◽  
Author(s):  
Caitlin Collins ◽  
Aleksandra K. Denisin ◽  
Beth L. Pruitt ◽  
W. James Nelson

Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document