rigidity sensing
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 15)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Ai Kia Yip ◽  
Songjing Zhang ◽  
Lor Huai Chong ◽  
Elsie Cheruba ◽  
Jessie Yong Xing Woon ◽  
...  

Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast’s ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2385
Author(s):  
Tae Hwan Shin ◽  
Saraswathy Nithiyanandam ◽  
Da Yeon Lee ◽  
Do Hyeon Kwon ◽  
Ji Su Hwang ◽  
...  

Nanoparticles (NPs) in biomedical applications have benefits owing to their small size. However, their intricate and sensitive nature makes an evaluation of the adverse effects of NPs on health necessary and challenging. Since there are limitations to conventional toxicological methods and omics analyses provide a more comprehensive molecular profiling of multifactorial biological systems, omics approaches are necessary to evaluate nanotoxicity. Compared to a single omics layer, integrated omics across multiple omics layers provides more sensitive and comprehensive details on NP-induced toxicity based on network integration analysis. As multi-omics data are heterogeneous and massive, computational methods such as machine learning (ML) have been applied for investigating correlation among each omics. This integration of omics and ML approaches will be helpful for analyzing nanotoxicity. To that end, mechanobiology has been applied for evaluating the biophysical changes in NPs by measuring the traction force and rigidity sensing in NP-treated cells using a sub-elastomeric pillar. Therefore, integrated omics approaches are suitable for elucidating mechanobiological effects exerted by NPs. These technologies will be valuable for expanding the safety evaluations of NPs. Here, we review the integration of omics, ML, and mechanobiology for evaluating nanotoxicity.


2021 ◽  
Vol 7 (5) ◽  
pp. eabd6187
Author(s):  
Ana C. Laly ◽  
Kristina Sliogeryte ◽  
Oscar J. Pundel ◽  
Rosie Ross ◽  
Michael C. Keeling ◽  
...  

The keratin network of intermediate filaments provides keratinocytes with essential mechanical strength and resilience, but the contribution to mechanosensing remains poorly understood. Here, we investigated the role of the keratin cytoskeleton in the response to altered matrix rigidity. We found that keratinocytes adapted to increasing matrix stiffness by forming a rigid, interconnected network of keratin bundles, in conjunction with F-actin stress fiber formation and increased cell stiffness. Disruption of keratin stability by overexpression of the dominant keratin 14 mutation R416P inhibited the normal mechanical response to substrate rigidity, reducing F-actin stress fibers and cell stiffness. The R416P mutation also impaired mechanotransduction to the nuclear lamina, which mediated stiffness-dependent chromatin remodeling. By contrast, depletion of the cytolinker plectin had the opposite effect and promoted increased mechanoresponsiveness and up-regulation of lamin A/C. Together, these results demonstrate that the keratin cytoskeleton plays a key role in matrix rigidity sensing and downstream signal transduction.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Abdurazak Aman Ketebo ◽  
Tae Hwan Shin ◽  
Myeongjun Jun ◽  
Gwang Lee ◽  
Sungsu Park

Abstract Background Nanoparticles (NPs) can enter cells and cause cellular dysfunction. For example, reactive oxygen species generated by NPs can damage the cytoskeleton and impair cellular adhesion properties. Previously, we reported that cell spreading and protrusion structures such as lamellipodia and filopodia was reduced when cells are treated with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)), even at 0.1 μg/μL. These protruded structures are involved in a cell’s rigidity sensing, but how these NPs affect rigidity sensing is unknown. Results Here, we report that the rigidity sensing of human embryonic kidney (HEK293) cells was impaired even at 0.1 μg/μL of MNPs@SiO2(RITC). At this concentration, cells were unable to discern the stiffness difference between soft (5 kPa) and rigid (2 MPa) flat surfaces. The impairment of rigidity sensing was further supported by observing the disappearance of locally contracted elastomeric submicron pillars (900 nm in diameter, 2 μm in height, 24.21 nN/μm in stiffness k) under MNPs@SiO2(RITC) treated cells. A decrease in the phosphorylation of paxillin, which is involved in focal adhesion dynamics, may cause cells to be insensitive to stiffness differences when they are treated with MNPs@SiO2(RITC). Conclusions Our results suggest that NPs may impair the rigidity sensing of cells even at low concentrations, thereby affecting cell adhesion and spreading.


2020 ◽  
Author(s):  
Abdurazak Aman Ketebo ◽  
Tae Hwan Shin ◽  
Myeongjun Jun ◽  
Gwang Lee ◽  
Sungsu Park

Abstract BackgroundNanoparticles (NPs) can enter cells and cause cellular dysfunction. For example, reactive oxygen species generated by NPs can damage the cytoskeleton and impair cellular adhesion properties. Previously, we reported that cell spreading and protrusion structures such as lamellipodia and filopodia was reduced when cells are treated with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)), even at 0.1 μg/μL. These protruded structures are involved in a cell’s rigidity sensing, but how these NPs affect rigidity sensing is unknown.ResultsHere, we report that the rigidity sensing of human embryonic kidney (HEK293) cells was impaired even at 0.1 μg/μL of MNPs@SiO2(RITC). At this concentration, cells were unable to discern the stiffness difference between soft (5 kPa) and rigid (2 MPa) flat surfaces. The impairment of rigidity sensing was further supported by observing the disappearance of locally contracted elastomeric submicron pillars (900 nm in diameter, 2 μm in height, 24.21 nN/μm in stiffness k) under MNPs@SiO2(RITC) treated cells. A decrease in the phosphorylation of paxillin, which is involved in focal adhesion dynamics, may cause cells to be insensitive to stiffness differences when they are treated with MNPs@SiO2(RITC).ConclusionsOur results suggest that NPs may impair the rigidity sensing of cells even at low concentrations, thereby affecting cell adhesion and spreading.


2020 ◽  
Author(s):  
Abdurazak Aman Ketebo ◽  
Tae Hwan Shin ◽  
Myeongjun Jun ◽  
Gwang Lee ◽  
Sungsu Park

Abstract Background: Nanoparticles (NPs) can enter cells and cause cellular dysfunction. For example, reactive oxygen species generated by NPs can damage the cytoskeleton and impair cellular adhesion properties. Previously, we reported that cell spreading and protrusion structures such as lamellipodia and filopodia was reduced when cells are treated with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)), even at 0.1 μg/μL. These protruded structures are involved in a cell’s rigidity sensing, but how these NPs affect rigidity sensing is unknown.Results: Here, we report that the rigidity sensing of human embryonic kidney (HEK293) cells was impaired even at 0.1 μg/μL of MNPs@SiO2(RITC). At this concentration, cells were unable to discern the stiffness difference between soft (5 kPa) and rigid (2 MPa) flat surfaces. The impairment of rigidity sensing was further supported by observing the disappearance of locally contracted elastomeric submicron pillars (900 nm in diameter, 2 μm in height, 24.21 nN/μm in stiffness k) under MNPs@SiO2(RITC) treated cells. A decrease in the phosphorylation of paxillin, which is involved in focal adhesion dynamics, may cause cells to be insensitive to stiffness differences when they are treated with MNPs@SiO2(RITC).Conclusions: Our results suggest that NPs may impair the rigidity sensing of cells even at low concentrations, thereby affecting cell adhesion and spreading.


2020 ◽  
Vol 117 (23) ◽  
pp. 12817-12825 ◽  
Author(s):  
Bryant L. Doss ◽  
Meng Pan ◽  
Mukund Gupta ◽  
Gianluca Grenci ◽  
René-Marc Mège ◽  
...  

Morphogenesis, tumor formation, and wound healing are regulated by tissue rigidity. Focal adhesion behavior is locally regulated by stiffness; however, how cells globally adapt, detect, and respond to rigidity remains unknown. Here, we studied the interplay between the rheological properties of the cytoskeleton and matrix rigidity. We seeded fibroblasts onto flexible microfabricated pillar arrays with varying stiffness and simultaneously measured the cytoskeleton organization, traction forces, and cell-rigidity responses at both the adhesion and cell scale. Cells adopted a rigidity-dependent phenotype whereby the actin cytoskeleton polarized on stiff substrates but not on soft. We further showed a crucial role of active and passive cross-linkers in rigidity-sensing responses. By reducing myosin II activity or knocking down α-actinin, we found that both promoted cell polarization on soft substrates, whereas α-actinin overexpression prevented polarization on stiff substrates. Atomic force microscopy indentation experiments showed that this polarization response correlated with cell stiffness, whereby cell stiffness decreased when active or passive cross-linking was reduced and softer cells polarized on softer matrices. Theoretical modeling of the actin network as an active gel suggests that adaptation to matrix rigidity is controlled by internal mechanical properties of the cytoskeleton and puts forward a universal scaling between nematic order of the actin cytoskeleton and the substrate-to-cell elastic modulus ratio. Altogether, our study demonstrates the implication of cell-scale mechanosensing through the internal stress within the actomyosin cytoskeleton and its coupling with local rigidity sensing at focal adhesions in the regulation of cell shape changes and polarity.


2020 ◽  
Author(s):  
Anwesha Sarkar ◽  
Dana LeVine ◽  
Yuanchang Zhao ◽  
Keyvan Mollaeian ◽  
Juan Ren ◽  
...  

AbstractResponse of integrin tensions to substrate rigidity is important in cell rigidity sensing but has not been confirmed. Current fluorescent tension sensors produce cellular force signals collectively resulted from integrin tension magnitude, tension dwell time, integrin density and activity, ligand density and accessibility, etc., making it challenging to monitor the absolute molecular force level of integrin tensions in live cells. Here we developed a tandem tension sensor (TTS) consisting of two coupled tension sensing units which are subject to the same tension and respond with different activation probabilities to the tension. Reported by fluorescence, the activation probability ratio of these two units solely responds to the force level of local integrin tensions, excluding the bias from other non-force factors. We verified the feasibility of TTS in detecting integrin tensions and applied it to study cells on elastic substrates. TTS unambiguously reported that integrin tensions in platelets decrease monotonically with the substrate rigidity, verifying the rigidity-dependence of integrin tensions in live cells.


2019 ◽  
Vol 19 (2) ◽  
pp. 239-250 ◽  
Author(s):  
Bo Yang ◽  
Haguy Wolfenson ◽  
Vin Yee Chung ◽  
Naotaka Nakazawa ◽  
Shuaimin Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document