Optimal Robust Controllers for Multibody Systems

Author(s):  
Petko Kiriazov
2013 ◽  
Vol 30 (1) ◽  
pp. 13-35 ◽  
Author(s):  
Maria Augusta Neto ◽  
Jorge A. C. Ambrósio ◽  
Luis M. Roseiro ◽  
A. Amaro ◽  
C. M. A. Vasques

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1359
Author(s):  
Marin Marin ◽  
Dumitru Băleanu ◽  
Sorin Vlase

The formalism of multibody systems offers a means of computer-assisted algorithmic analysis and a means of simulating and optimizing an arbitrary movement of a possible high number of elastic bodies in the connection [...]


Author(s):  
Bo Li ◽  
Xiaoting Rui ◽  
Guoping Wang ◽  
Jianshu Zhang ◽  
Qinbo Zhou

Dynamics analysis is currently a key technique to fully understand the dynamic characteristics of sophisticated mechanical systems because it is a prerequisite for dynamic design and control studies. In this study, a dynamics analysis problem for a multiple launch rocket system (MLRS) is developed. We particularly focus on the deductions of equations governing the motion of the MLRS without rockets by using a transfer matrix method for multibody systems and the motion of rockets via the Newton–Euler method. By combining the two equations, the differential equations of the MLRS are obtained. The complete process of the rockets’ ignition, movement in the barrels, airborne flight, and landing is numerically simulated via the Monte Carlo stochastic method. An experiment is implemented to validate the proposed model and the corresponding numerical results.


Sign in / Sign up

Export Citation Format

Share Document