phase space analysis
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 21)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 392 ◽  
pp. 107995
Author(s):  
Divyang G. Bhimani ◽  
Ramesh Manna ◽  
Fabio Nicola ◽  
Sundaram Thangavelu ◽  
S. Ivan Trapasso

2021 ◽  
Vol 36 (31) ◽  
Author(s):  
Koblandy Yerzhanov ◽  
Shynaray Myrzakul ◽  
Duman Kenzhalin ◽  
Martiros Khurshudyan

The phase space analysis has been used to probe the accelerated expansion of the Universe when [Formula: see text] dark energy interacts with cold dark matter. Non-gravitational interactions [Formula: see text] and [Formula: see text] considered in this work are one of the first models of sign changing interactions that appeared in the literature. Specific [Formula: see text] dark energy model with [Formula: see text] has been assumed and all late time scaling attractors have been found. This is a two-parameter model with [Formula: see text] and [Formula: see text] parameters to be determined, while [Formula: see text] is the deceleration parameter. In general the motivation to consider similar fluid models is directly related to the attempts to unify dark energy and dark matter involving the properties of the deceleration parameter. The previous study using similar dark energy model showed that the BOSS result for the expansion rate at [Formula: see text] can be explained without interaction with cold dark matter. In this way, the previous result provides a reasonable basis to organize future studies in this direction. This study is one of the first attempts in this direction. It should be mentioned that the full comparison of the models with observation data and the classification of future singularities have been left as a subject of a forthcoming paper. There are several ways that the model can be extended which also has been left as a subject of a forthcoming paper.


2021 ◽  
Vol 13 (15) ◽  
pp. 2954
Author(s):  
Tiffany M. Wei ◽  
Ana P. Barros

Hydro-climatic resilience is an essential element of food security. The miombo ecosystem in Southern Africa supports varied land uses for a growing population. Albedo, Leaf Area Index (LAI), Fractional Vegetation Cover (FVC), Solar-Induced chlorophyll Fluorescence (SIF), and precipitation remote-sensing data for current climate were jointly analyzed to explore vegetation dynamics and water availability feedbacks. Changes in the surface energy balance tied to vegetation status were examined in the light of an hourly albedo product with improved atmospheric correction derived for this study. Phase-space analysis shows that the albedo’s seasonality tracks the landscape-scale functional stability of miombo and woody savanna with respect to precipitation variations. Miombo exhibits the best adaptive traits to water stress which highlights synergies among root-system water uptake capacity, vegetation architecture, and landscape hydro-geomorphology. This explains why efforts to conserve the spatial structure of the miombo forest in sustainable farming of seasonal wetlands have led to significant crop yield increases. Grass savanna’s high vulnerability to water stress is illustrative of potential run-away impacts of miombo deforestation. This study suggests that phase-space analysis of albedo, SIF, and FVC can be used as operational diagnostics of ecosystem health.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Mark G. Rabbat ◽  
Shyam Ramchandani ◽  
William E. Sanders

The bridge of artificial intelligence to cardiovascular medicine has opened up new avenues for novel diagnostics that may significantly enhance the cardiology care pathway. Cardiac phase space analysis is a noninvasive diagnostic platform that combines advanced disciplines of mathematics and physics with machine learning. Thoracic orthogonal voltage gradient (OVG) signals from an individual are evaluated by cardiac phase space analysis to quantify physiological and mathematical features associated with coronary stenosis. The analysis is performed at the point of care without the need for a change in physiologic status or radiation. This review will highlight some of the scientific principles behind the technology, provide a description of the system and device, and discuss the study procedure, clinical data, and potential future applications.


2021 ◽  
pp. 2150052
Author(s):  
Qihong Huang ◽  
Ruanjing Zhang ◽  
Jun Chen ◽  
He Huang ◽  
Feiquan Tu

In this paper, we analyze the universe evolution and phase space behavior of the Umami Chaplygin model, where the Umami Chaplygin fluid replaces both a dark energy and a dark and baryonic matter. We find the Umami Chaplygin model can be stable against perturbations under some conditions and can be used to explain the late-time cosmic acceleration. The results of phase space analysis show that there exists a late-time accelerated expansion attractor with [Formula: see text], which indicates the Umami Chaplygin fluid can behave as a cosmological constant. Moreover, the Umami Chaplygin model can describe the expansion history of the universe. The evolutionary trajectories of the statefinder diagnostic pairs and the finite time future singularities are also discussed.


Author(s):  
Paul Gesel ◽  
Francesco Mikulis-Borsoi ◽  
Dain LaRoche ◽  
Sajay Arthanat ◽  
Momotaz Begum

Instruments ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 23
Author(s):  
Detlef-M. Smilgies

Flux as well as spatial and angular resolution for a microbeam small-angle X-ray scattering set-up, comprising Laue optics and multiple focusing elements are modeled within five-dimensional phase space analysis. A variety of X-ray optics configurations for highest angular resolution and for highest spatial resolution are analyzed.


Sign in / Sign up

Export Citation Format

Share Document