1.8 Theoretical nomograms: Calculated average magnetic moments, spin-orbit coupling, axial field splitting, and covalency

Author(s):  
E. König
2018 ◽  
Vol 112 (7) ◽  
pp. 071903 ◽  
Author(s):  
Nicolas Chauvin ◽  
Amaury Mavel ◽  
Ali Jaffal ◽  
Gilles Patriarche ◽  
Michel Gendry

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Teresa Feldmaier ◽  
Pascal Strobel ◽  
Michael Schmid ◽  
Philipp Hansmann ◽  
Maria Daghofer

2017 ◽  
Vol 50 (2) ◽  
pp. 576-584 ◽  
Author(s):  
Meng Wu ◽  
Jin-Cheng Zheng ◽  
Hui-Qiong Wang

Configuration interaction cluster calculation can effectively reproduce the experimentally measured Ti L 23-edge absorption spectrum for the TiO6 cluster LaTiO3. A further investigation of the hybridization strength and charge-transfer energy effects on the multiplet structures suggests that LaTiO3 should be classified as an intermediate state between the charge-transfer and Mott–Hubbard regimes. Detailed temperature-dependent simulations of absorption spectra support the lifting of Ti t 2g orbital degeneracy and crystal field splitting. The spin–orbit coupling scenario is ruled out, even though 3d spin–orbit coupling can reproduce the experimental spectrum without including temperature. A combined polarization- and crystal-field-splitting-dependent analysis indicates asymmetric ΔCF–orbital interactions for the TiO6 cluster [Ti3+:3d 1(t 2g 1)], different from the orbital–lattice interactions reported for the NiO6 cluster [Ni3+:3d 7(t 2g 6 eg 1)]. The orbital polarization is defined in terms of the normalized electron occupancies in orbitals with xy and xz(yz) symmetries, and nearly complete orbital polarization (more than 75%) is observed, indicating strongly reduced orbital fluctuations due to the correlation effects. This is consistent with the density of states for titanates based on local density approximation plus dynamical mean-field theory calculations.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 91-94
Author(s):  
Yang Mei ◽  
Wen-Chen Zheng ◽  
Xiao-Xuan Wu ◽  
Qing Zhoua

The EPR parameters (zero-field splitting D and g factors g‖, g⊥) of Cr3+ in a NaInS2 crystal are calculated from high-order perturbation formulas based on the two spin-orbit coupling parameter model for the EPR parameters of 3d3 ions in trigonal octahedral sites. In the calculations, both the contribution to EPR parameters from the spin-orbit coupling parameter of the central 3d3 ion and that of ligands are considered. From the calculations it is found that, to explain reasonably the EPR parameters, the local structure (in particular the local trigonal distortion angle θ ) in the vicinity of the Cr3+ impurity is different from the corresponding structure in the host crystal. The change of the local angle θ with temperature is also obtained from the temperature dependence of zero-field splitting. The results are discussed.


2004 ◽  
Vol 59 (12) ◽  
pp. 961-963 ◽  
Author(s):  
Wen-Chen Zheng ◽  
Yang Mei ◽  
Xiao-Xuan Wu ◽  
Qing Zhou

By using the spin-orbit coupling mechanism and the empirical superposition model, the zero-field splittings D of Mn2+ ions on both Mg2+ sites in hexagonal 6H-RbMgF3 crystal are calculated from the structural data of both Mg2+ sites. The calculated results of both methods confirm the suggestion that Mn2+ in 6H-RbMgF3 occupies the Mg2+ (I) site (which has D3d site symmetry) and the zero-field splitting D of 6H-RbMgF3: Mn2+ is explained reasonably.


Sign in / Sign up

Export Citation Format

Share Document