axial field
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 21)

H-INDEX

31
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ashok Tiwari ◽  
Michael Merrick ◽  
Stephen A. Graves ◽  
John Sunderland


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefaan Vandenberghe

Abstract Total body positron emission tomography (PET) systems are being developed by different groups worldwide. These systems have potential to change the number of applications in which molecular imaging is used. The change from a short axial field of view (FOV) to a longer one is however associated with a linear increase in the cost of these systems. This may limit their application to a small number of centers (capable of obtaining sufficient research funding). Therefore it remains interesting to see if lower cost systems can be developed and bring total body PET to the clinic for an acceptable budget. The wider availability of this low cost system can also enable more researchers to further optimize and explore the full potential of total body PET.



Author(s):  
John Dickson ◽  
Uta Eberlein ◽  
Michael Lassmann

Abstract Aim Recent advancements in PET technology have brought with it significant improvements in PET performance and image quality. In particular, the extension of the axial field of view of PET systems, and the introduction of semiconductor technology into the PET detector, initially for PET/MR, and more recently available long-field-of-view PET/CT systems (≥ 25 cm) have brought a step change improvement in the sensitivity of PET scanners. Given the requirement to limit paediatric doses, this increase in sensitivity is extremely welcome for the imaging of children and young people. This is even more relevant with PET/MR, where the lack of CT exposures brings further dose reduction benefits to this population. In this short article, we give some details around the benefits around new PET technology including PET/MR and its implications on the EANM paediatric dosage card. Material and methods  Reflecting on EANM adult guidance on injected activities, and making reference to bed overlap and the concept of MBq.min bed−1 kg−1, we use published data on image quality from PET/MR systems to update the paediatric dosage card for PET/MR and extended axial field of view (≥ 25 cm) PET/CT systems. However, this communication does not cover the expansion of paediatric dosing for the half-body and total-body scanners that have recently come to market. Results In analogy to the existing EANM dosage card, new parameters for the EANM paediatric dosage card were developed (class B, baseline value: 10.7 MBq, minimum recommended activity 10 MBq). The recommended administered activities for the systems considered in this communication range from 11 MBq [18F]FDG for a child with a weight of 3 kg to 149 MBq [18F]FDG for a paediatric patient weight of 68 kg, assuming a scan of 3 min per bed position. The mean effective dose over all ages (1 year and older) is 2.85 mSv. Conclusion With this, recommendations for paediatric dosing are given for systems that have not been considered previously.



Author(s):  
Mamta Yadav ◽  
Ashok Kumar ◽  
Subhayan Mandal

Abstract Laser irradiated parallel gold nanorods with interspersed deuterium nanoparticles are shown to offer guided acceleration of nanoparticles. The laser pulse of intensity exceeding 1018W/cm2 at 1 μm wavelength and pulse duration ~30 fs causes full ionization of nanoparticles and high state ionization of gold atoms and pushes out the free electrons via the ponderomotive force. The charged nanorods have an electric field that has transverse component towards the axis of symmetry and axial field outwards. Thus the nanoparticles are accelerated axially while confined transversely. Deuterium beam of a few MeV energy can be produced by this technique.



Author(s):  
Praveen Kumar Sahu

Abstract The proliferation of the cylindrical shock in non-ideal rotating gases accompanying the mixture of crystalline solids with monochromatic radiation as well as magnetic (azimuthal/axial) field is examined. The fluid velocity of ambient media is considered to contain radial, axial, and azimuthal heads. Similarity solutions are achieved. The distribution of flow variables in the medium just behind the shock for the cases of power-law shock paths are analyzed. This is worthy to note, the pressure and density at piston disintegrate in occupancy of an azimuthal magnetic field, therefore suction structures at the axis of symmetry, which is identically in accord with controlled circumstances for trying to produce shock waves.



2021 ◽  
Author(s):  
Song Xue ◽  
Karl Peter Bohn ◽  
Rui Guo ◽  
Hasan Sari ◽  
Marco Viscione ◽  
...  


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5498
Author(s):  
Shuai Wang ◽  
Mingyao Lin ◽  
Keman Lin ◽  
Yong Kong

This paper studies the torque production mechanism of the dual-stator axial-field flux-switching permanent magnet (DSAFFSPM) machine. Due to the double-sided slotting design of such topology, more resultant air-gap working harmonics in the air-gap flux density are responsible for the torque production and the stator air-gap permeance is especially considered in the investigation. Based on the magnetic force (MMF)-permeance model, the composition and difference of the air-gap working harmonics are demonstrated. The DSAFFSPM machine torque contributions of the main working harmonics are analyzed theoretically and quantified by finite element analysis (FEA). The influence laws of the parameters on the working harmonics are shown and this effectively improves the motor operation performance. Finally, some experiments on the DSAFFSPM machine are carried out to validate the analytical and FEA results.



2021 ◽  
pp. jnumed.121.261972
Author(s):  
George Amadeus Prenosil ◽  
Hasan Sari ◽  
Markus Fürstner ◽  
Ali Afshar-Oromieh ◽  
Kuangyu Shi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document