Optimal Strategy for Resource Allocation of Two-Dimensional Potts Model Using Genetic Algorithm

Author(s):  
Wing Keung Cheung ◽  
Kwok Yip Szeto
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight hr,1, with r ∈ ℕ*, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $$ {\Phi}_{12}^D $$ Φ 12 D in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.


2009 ◽  
Vol 14 (1) ◽  
pp. 60-64
Author(s):  
Qingming Wu ◽  
Wei Yang ◽  
Qiang Zhang ◽  
Junjie Zhou

2017 ◽  
Vol 26 (1) ◽  
pp. 169-184 ◽  
Author(s):  
Absalom E. Ezugwu ◽  
Nneoma A. Okoroafor ◽  
Seyed M. Buhari ◽  
Marc E. Frincu ◽  
Sahalu B. Junaidu

AbstractThe operational efficacy of the grid computing system depends mainly on the proper management of grid resources to carry out the various jobs that users send to the grid. The paper explores an alternative way of efficiently searching, matching, and allocating distributed grid resources to jobs in such a way that the resource demand of each grid user job is met. A proposal of resource selection method that is based on the concept of genetic algorithm (GA) using populations based on multisets is made. Furthermore, the paper presents a hybrid GA-based scheduling framework that efficiently searches for the best available resources for user jobs in a typical grid computing environment. For the proposed resource allocation method, additional mechanisms (populations based on multiset and adaptive matching) are introduced into the GA components to enhance their search capability in a large problem space. Empirical study is presented in order to demonstrate the importance of operator improvement on traditional GA. The preliminary performance results show that the proposed introduction of an additional operator fine-tuning is efficient in both speed and accuracy and can keep up with high job arrival rates.


Sign in / Sign up

Export Citation Format

Share Document