Design of System Area Network Interface Card Based on Intel IOP310

Author(s):  
Xiaojun Yang ◽  
Lili Guo ◽  
Peiheng Zhang ◽  
Ninghui Sun
2018 ◽  
Vol 14 (4) ◽  
pp. 155014771774110
Author(s):  
Taikyeong Ted Jeong

The designs of highly scalable intelligent sensory application—Ethernet-based communication architectures—are moving toward the integration of a fault recovery and fault-detection algorithm on the automotive industry. In particular, each port on the same network interface card design is required to provide highly scalable and low-latency communication. In this article, we present a study of intelligent sensory application for the Ethernet-based communication architecture and performance of multi-port configuration which is mainly used in safety-enhanced application such as automotive, military, finance, and aerospace, in other words, safety-critical applications. Our contributions and observations on the highly scalable intelligent behavior: (1) proposed network interface card board design scheme and architecture with multi-port configuration are a stable network configuration; (2) timing matrix is defined for fault detection and recovery time; (3) experimental and related verification methods by cyclic redundancy check between client–server and testing platform provide comparable results to each port configurations; and (4) application program interface–level algorithm is defined to make network interface card ready for fault detection.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 264 ◽  
Author(s):  
José Santa ◽  
Ramon Sanchez-Iborra ◽  
Pablo Rodriguez-Rey ◽  
Luis Bernal-Escobedo ◽  
Antonio Skarmeta

Remote vehicle monitoring is a field that has recently attracted the attention of both academia and industry. With the dawn of the Internet of Things (IoT) paradigm, the possibilities for performing this task have multiplied, due to the emergence of low-cost and multi-purpose monitoring devices and the evolution of wireless transmission technologies. Low Power-Wide Area Network (LPWAN) encompasses a set of IoT communication technologies that are gaining momentum, due to their highly valued features regarding transmission distance and end-device energy consumption. For that reason, in this work we present a vehicular monitoring platform enabled by LPWAN-based technology, namely Long Range Wide Area Network (LoRaWAN). Concretely, we explore the end-to-end architecture considering vehicle data retrieving by using an On-Board Diagnostics II (OBD-II) interface, their compression with a novel IETF compression scheme in order to transmit them over the constrained LoRaWAN link, and information visualization through a data server hosted in the cloud, by means of a web-based dashboard. A key advance of the proposal is the design and development of a UNIX-based network interface for LPWAN communications. The whole system has been tested in a university campus environment, showing its capabilities to remotely track vehicle status in real-time. The conducted performance evaluation also shows high levels of reliability in the transmission link, with packet delivery ratios over 95%. The platform boosts the process of monitoring vehicles, enabling a variety of services such as mechanical failure prediction and detection, fleet management, and traffic monitoring, and is extensible to light vehicles with severe power constraints.


Author(s):  
Se-Mog Kim ◽  
Hoang-Anh Pham ◽  
Dong-Ho Lee ◽  
Jong Myung Rhee

2019 ◽  
Author(s):  
Paolo Cretaro ◽  
Andrea Biagioni ◽  
Ottorino Frezza ◽  
Francesca Lo Cicero ◽  
Alessandro Lonardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document