Evaluation and Fuzzy Classification of Gene Finding Programs on Human Genome Sequences

Author(s):  
Atulya Nagar ◽  
Sujita Purushothaman ◽  
Hissam Tawfik
Author(s):  
Viola Kurm ◽  
Ilse Houwers ◽  
Claudia E. Coipan ◽  
Peter Bonants ◽  
Cees Waalwijk ◽  
...  

AbstractIdentification and classification of members of the Ralstonia solanacearum species complex (RSSC) is challenging due to the heterogeneity of this complex. Whole genome sequence data of 225 strains were used to classify strains based on average nucleotide identity (ANI) and multilocus sequence analysis (MLSA). Based on the ANI score (>95%), 191 out of 192(99.5%) RSSC strains could be grouped into the three species R. solanacearum, R. pseudosolanacearum, and R. syzygii, and into the four phylotypes within the RSSC (I,II, III, and IV). R. solanacearum phylotype II could be split in two groups (IIA and IIB), from which IIB clustered in three subgroups (IIBa, IIBb and IIBc). This division by ANI was in accordance with MLSA. The IIB subgroups found by ANI and MLSA also differed in the number of SNPs in the primer and probe sites of various assays. An in-silico analysis of eight TaqMan and 11 conventional PCR assays was performed using the whole genome sequences. Based on this analysis several cases of potential false positives or false negatives can be expected upon the use of these assays for their intended target organisms. Two TaqMan assays and two PCR assays targeting the 16S rDNA sequence should be able to detect all phylotypes of the RSSC. We conclude that the increasing availability of whole genome sequences is not only useful for classification of strains, but also shows potential for selection and evaluation of clade specific nucleic acid-based amplification methods within the RSSC.


Author(s):  
Luis M. Rodriguez-R ◽  
Ramon Rosselló-Móra ◽  
Konstantinos T. Konstantinidis

Abstract This book chapter attempts to summarize the major findings from genome-based taxonomic studies in the past two decades, and briefly describe the major genome-based approaches currently available for species identification and classification with special focus on the 'uncultivated majority' and associated limitations, as well as outlines future directions towards a truly genome-based taxonomy for prokaryotes that will equally encompass cultured and uncultivated taxa. Importantly, the need for a system to catalogue uncultivated taxa is very urgent, because the genomes and ecological/functional data that are becoming available are already overwhelming, and alphanumeric identifiers and synonyms are creating confusion of Babylonian dimensions.


Sign in / Sign up

Export Citation Format

Share Document