Reducing Inductive Definitions to Propositional Satisfiability

Author(s):  
Nikolay Pelov ◽  
Eugenia Ternovska
2019 ◽  
Vol 170 (10) ◽  
pp. 1256-1272 ◽  
Author(s):  
Ayana Hirata ◽  
Hajime Ishihara ◽  
Tatsuji Kawai ◽  
Takako Nemoto

1993 ◽  
Vol 58 (1) ◽  
pp. 291-313 ◽  
Author(s):  
Robert S. Lubarsky

Inductive definability has been studied for some time already. Nonetheless, there are some simple questions that seem to have been overlooked. In particular, there is the problem of the expressibility of the μ-calculus.The μ-calculus originated with Scott and DeBakker [SD] and was developed by Hitchcock and Park [HP], Park [Pa], Kozen [K], and others. It is a language for including inductive definitions with first-order logic. One can think of a formula in first-order logic (with one free variable) as defining a subset of the universe, the set of elements that make it true. Then “and” corresponds to intersection, “or” to union, and “not” to complementation. Viewing the standard connectives as operations on sets, there is no reason not to include one more: least fixed point.There are certain features of the μ-calculus coming from its being a language that make it interesting. A natural class of inductive definitions are those that are monotone: if X ⊃ Y then Γ (X) ⊃ Γ (Y) (where Γ (X) is the result of one application of the operator Γ to the set X). When studying monotonic operations in the context of a language, one would need a syntactic guarantor of monotonicity. This is provided by the notion of positivity. An occurrence of a set variable S is positive if that occurrence is in the scopes of exactly an even number of negations (the antecedent of a conditional counting as a negation). S is positive in a formula ϕ if each occurrence of S is positive. Intuitively, the formula can ask whether x ∊ S, but not whether x ∉ S. Such a ϕ can be considered an inductive definition: Γ (X) = {x ∣ ϕ(x), where the variable S is interpreted as X}. Moreover, this induction is monotone: as X gets bigger, ϕ can become only more true, by the positivity of S in ϕ. So in the μ-calculus, a formula is well formed by definition only if all of its inductive definitions are positive, in order to guarantee that all inductive definitions are monotone.


1995 ◽  
Vol 06 (03) ◽  
pp. 203-234 ◽  
Author(s):  
YUKIYOSHI KAMEYAMA

This paper studies an extension of inductive definitions in the context of a type-free theory. It is a kind of simultaneous inductive definition of two predicates where the defining formulas are monotone with respect to the first predicate, but not monotone with respect to the second predicate. We call this inductive definition half-monotone in analogy of Allen’s term half-positive. We can regard this definition as a variant of monotone inductive definitions by introducing a refined order between tuples of predicates. We give a general theory for half-monotone inductive definitions in a type-free first-order logic. We then give a realizability interpretation to our theory, and prove its soundness by extending Tatsuta’s technique. The mechanism of half-monotone inductive definitions is shown to be useful in interpreting many theories, including the Logical Theory of Constructions, and Martin-Löf’s Type Theory. We can also formalize the provability relation “a term p is a proof of a proposition P” naturally. As an application of this formalization, several techniques of program/proof-improvement can be formalized in our theory, and we can make use of this fact to develop programs in the paradigm of Constructive Programming. A characteristic point of our approach is that we can extract an optimization program since our theory enjoys the program extraction theorem.


1999 ◽  
pp. 57-66
Author(s):  
Neil Immerman

Author(s):  
Frank Neumann ◽  
Andrew M. Sutton

We study the ability of a simple mutation-only evolutionary algorithm to solve propositional satisfiability formulas with inherent community structure. We show that the community structure translates to good fitness-distance correlation properties, which implies that the objective function provides a strong signal in the search space for evolutionary algorithms to locate a satisfying assignment efficiently. We prove that when the formula clusters into communities of size s ∈ ω(logn) ∩O(nε/(2ε+2)) for some constant 0


Author(s):  
Giovanni Amendola ◽  
Carmine Dodaro ◽  
Marco Maratea

The issue of describing in a formal way solving algorithms in various fields such as Propositional Satisfiability (SAT), Quantified SAT, Satisfiability Modulo Theories, Answer Set Programming (ASP), and Constraint ASP, has been relatively recently solved employing abstract solvers. In this paper we deal with cautious reasoning tasks in ASP, and design, implement and test novel abstract solutions, borrowed from backbone computation in SAT. By employing abstract solvers, we also formally show that the algorithms for solving cautious reasoning tasks in ASP are strongly related to those for computing backbones of Boolean formulas. Some of the new solutions have been implemented in the ASP solver WASP, and tested.


2017 ◽  
pp. 87-104
Author(s):  
Torkel Franzen

Sign in / Sign up

Export Citation Format

Share Document