fitness distance correlation
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Wei Li ◽  
Furong Tian ◽  
Ke Li

Rail guide vehicle (RGV) problems have the characteristics of fast running, stable performance, and high automation. RGV dynamic scheduling has a great impact on the working efficiency of an entire automated warehouse. However, the relative intelligent optimization research of different workshop components for RGV dynamic scheduling problems are insufficient scheduling in the previous works. They appear idle when waiting, resulting in reduced operating efficiency during operation. This article proposes a new distance landscape strategy for the RGV dynamic scheduling problems. In order to solve the RGV dynamic scheduling problem more effectively, experiments are conducted based on the type of computer numerical controller (CNC) with two different procedures programming model in solving the RGV dynamic scheduling problems. The experiment results reveal that this new distance landscape strategy can provide promising results and solves the considered RGV dynamic scheduling problem effectively.


Author(s):  
Frank Neumann ◽  
Andrew M. Sutton

We study the ability of a simple mutation-only evolutionary algorithm to solve propositional satisfiability formulas with inherent community structure. We show that the community structure translates to good fitness-distance correlation properties, which implies that the objective function provides a strong signal in the search space for evolutionary algorithms to locate a satisfying assignment efficiently. We prove that when the formula clusters into communities of size s ∈ ω(logn) ∩O(nε/(2ε+2)) for some constant 0


Author(s):  
Kangshun Li ◽  
Zhuozhi Liang ◽  
Shuling Yang ◽  
Zhangxing Chen ◽  
Hui Wang ◽  
...  

Dynamic fitness landscape analyses contain different metrics to attempt to analyze optimization problems. In this article, some of dynamic fitness landscape metrics are selected to discuss differential evolution (DE) algorithm properties and performance. Based on traditional differential evolution algorithm, benchmark functions and dynamic fitness landscape measures such as fitness distance correlation for calculating the distance to the nearest global optimum, ruggedness based on entropy, dynamic severity for estimating dynamic properties, a fitness cloud for getting a visual rendering of evolvability and a gradient for analyzing micro changes of benchmark functions in differential evolution algorithm, the authors obtain useful results and try to apply effective data, figures and graphs to analyze the performance differential evolution algorithm and make conclusions. Those metrics have great value and more details as DE performance.


2017 ◽  
Vol 25 (3) ◽  
pp. 407-437 ◽  
Author(s):  
I. Moser ◽  
M. Gheorghita ◽  
A. Aleti

Complex combinatorial problems are most often optimised with heuristic solvers, which usually deliver acceptable results without any indication of the quality obtained. Recently, predictive diagnostic optimisation was proposed as a means of characterising the fitness landscape while optimising a combinatorial problem. The scalars produced by predictive diagnostic optimisation appear to describe the difficulty of the problem with relative reliability. In this study, we record more scalars that may be helpful in determining problem difficulty during the optimisation process and analyse these in combination with other well-known landscape descriptors by using exploratory factor analysis on four landscapes that arise from different search operators, applied to a varied set of quadratic assignment problem instances. Factors are designed to capture properties by combining the collinear variances of several variables. The extracted factors can be interpreted as the features of landscapes detected by the variables, but disappoint in their weak correlations with the result quality achieved by the optimiser, which we regard as the most reliable indicator of difficulty available. It appears that only the prediction error of predictive diagnostic optimisation has a strong correlation with the quality of the results produced, followed by a medium correlation of the fitness distance correlation of the local optima.


2015 ◽  
pp. 107-112
Author(s):  
Sunanda Gupta ◽  
Sakshi Arora

Multi Dimensional Knapsack problem is a widely studied NP hard problem requiring extensive processing to achieve optimality. Simulated Annealing (SA) unlike other is capable of providing fast solutions but at the cost of solution quality. This paper focuses on making SA robust in terms of solution quality while assuring faster convergence by incorporating effective fitness landscape parameters. For this it proposes to modify the ‘Acceptance Probability’ function of SA. The fitness landscape evaluation strategies are embedded to Acceptance Probability Function to identify the exploitation and exploration of the search space and analyze the behavior on the performance of SA. The basis of doing so is that SA in the process of reaching optimality ignores the association between the search space and fitness space and focuses only on the comparison of current solution with optimal solution on the basis of temperature settings at that point. The idea is implemented in two different ways i.e. by making use of Fitness Distance Correlation and Auto Correlation functions. The experiments are conducted to evaluate the resulting SA on the range of MKP instances available in the OR library.


Sign in / Sign up

Export Citation Format

Share Document