L 1 Pattern Matching Lower Bound

Author(s):  
Ohad Lipsky ◽  
Ely Porat
Keyword(s):  
2018 ◽  
Vol 29 (02) ◽  
pp. 315-329 ◽  
Author(s):  
Timothy Ng ◽  
David Rappaport ◽  
Kai Salomaa

The neighbourhood of a language [Formula: see text] with respect to an additive distance consists of all strings that have distance at most the given radius from some string of [Formula: see text]. We show that the worst case deterministic state complexity of a radius [Formula: see text] neighbourhood of a language recognized by an [Formula: see text] state nondeterministic finite automaton [Formula: see text] is [Formula: see text]. In the case where [Formula: see text] is deterministic we get the same lower bound for the state complexity of the neighbourhood if we use an additive quasi-distance. The lower bound constructions use an alphabet of size linear in [Formula: see text]. We show that the worst case state complexity of the set of strings that contain a substring within distance [Formula: see text] from a string recognized by [Formula: see text] is [Formula: see text].


2008 ◽  
Vol 105 (4) ◽  
pp. 141-143 ◽  
Author(s):  
Ohad Lipsky ◽  
Ely Porat
Keyword(s):  

2015 ◽  
Vol 115 (5) ◽  
pp. 527-531 ◽  
Author(s):  
Ivan Bliznets ◽  
Marek Cygan ◽  
Paweł Komosa ◽  
Lukáš Mach

2005 ◽  
Vol 33 (1) ◽  
pp. 2-17 ◽  
Author(s):  
D. Colbry ◽  
D. Cherba ◽  
J. Luchini

Abstract Commercial databases containing images of tire tread patterns are currently used by product designers, forensic specialists and product application personnel to identify whether a given tread pattern matches an existing tire. Currently, this pattern matching process is almost entirely manual, requiring visual searches of extensive libraries of tire tread patterns. Our work explores a first step toward automating this pattern matching process by building on feature analysis techniques from computer vision and image processing to develop a new method for extracting and classifying features from tire tread patterns and automatically locating candidate matches from a database of existing tread pattern images. Our method begins with a selection of tire tread images obtained from multiple sources (including manufacturers' literature, Web site images, and Tire Guides, Inc.), which are preprocessed and normalized using Two-Dimensional Fast Fourier Transforms (2D-FFT). The results of this preprocessing are feature-rich images that are further analyzed using feature extraction algorithms drawn from research in computer vision. A new, feature extraction algorithm is developed based on the geometry of the 2D-FFT images of the tire. The resulting FFT-based analysis allows independent classification of the tire images along two dimensions, specifically by separating “rib” and “lug” features of the tread pattern. Dimensionality of (0,0) indicates a smooth treaded tire with no pattern; dimensionality of (1,0) and (0,1) are purely rib and lug tires; and dimensionality of (1,1) is an all-season pattern. This analysis technique allows a candidate tire to be classified according to the features of its tread pattern, and other tires with similar features and tread pattern classifications can be automatically retrieved from the database.


2017 ◽  
Vol 5 (1) ◽  
pp. 8-15
Author(s):  
Sergii Hilgurt ◽  

The multi-pattern matching is a fundamental technique found in applications like a network intrusion detection system, anti-virus, anti-worms and other signature- based information security tools. Due to rising traffic rates, increasing number and sophistication of attacks and the collapse of Moore’s law, traditional software solutions can no longer keep up. Therefore, hardware approaches are frequently being used by developers to accelerate pattern matching. Reconfigurable FPGA-based devices, providing the flexibility of software and the near-ASIC performance, have become increasingly popular for this purpose. Hence, increasing the efficiency of reconfigurable information security tools is a scientific issue now. Many different approaches to constructing hardware matching circuits on FPGAs are known. The most widely used of them are based on discrete comparators, hash-functions and finite automata. Each approach possesses its own pros and cons. None of them still became the leading one. In this paper, a method to combine several different approaches to enforce their advantages has been developed. An analytical technique to quickly advance estimate the resource costs of each matching scheme without need to compile FPGA project has been proposed. It allows to apply optimization procedures to near-optimally split the set of pattern between different approaches in acceptable time.


Sign in / Sign up

Export Citation Format

Share Document