Quantum Algorithm for Solving the Discrete Logarithm Problem in the Class Group of an Imaginary Quadratic Field and Security Comparison of Current Cryptosystems at the Beginning of Quantum Computer Age

Author(s):  
Arthur Schmidt
2019 ◽  
Vol 71 (6) ◽  
pp. 1395-1419
Author(s):  
Hugo Chapdelaine ◽  
Radan Kučera

AbstractThe aim of this paper is to study the group of elliptic units of a cyclic extension $L$ of an imaginary quadratic field $K$ such that the degree $[L:K]$ is a power of an odd prime $p$. We construct an explicit root of the usual top generator of this group, and we use it to obtain an annihilation result of the $p$-Sylow subgroup of the ideal class group of $L$.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

In this chapter we examine one of two main classes of algorithms: quantum algorithms that solve problems with a complexity that is superpolynomially less than the complexity of the best-known classical algorithm for the same problem. That is, the complexity of the best-known classical algorithm cannot be bounded above by any polynomial in the complexity of the quantum algorithm. The algorithms we will detail all make use of the quantum Fourier transform (QFT). We start off the chapter by studying the problem of quantum phase estimation, which leads us naturally to the QFT. Section 7.1 also looks at using the QFT to find the period of periodic states, and introduces some elementary number theory that is needed in order to post-process the quantum algorithm. In Section 7.2, we apply phase estimation in order to estimate eigenvalues of unitary operators. Then in Section 7.3, we apply the eigenvalue estimation algorithm in order to derive the quantum factoring algorithm, and in Section 7.4 to solve the discrete logarithm problem. In Section 7.5, we introduce the hidden subgroup problem which encompasses both the order finding and discrete logarithm problem as well as many others. This chapter by no means exhaustively covers the quantum algorithms that are superpolynomially faster than any known classical algorithm, but it does cover the most well-known such algorithms. In Section 7.6, we briefly discuss other quantum algorithms that appear to provide a superpolynomial advantage. To introduce the idea of phase estimation, we begin by noting that the final Hadamard gate in the Deutsch algorithm, and the Deutsch–Jozsa algorithm, was used to get at information encoded in the relative phases of a state. The Hadamard gate is self-inverse and thus does the opposite as well, namely it can be used to encode information into the phases. To make this concrete, first consider H acting on the basis state |x⟩ (where x ∊ {0, 1}). It is easy to see that You can think about the Hadamard gate as having encoded information about the value of x into the relative phases between the basis states |0⟩ and |1⟩.


2009 ◽  
Vol 9 (7&8) ◽  
pp. 610-621
Author(s):  
D. Maslov ◽  
J. Mathew ◽  
D. Cheung ◽  
D.K. Pradhan

We consider a quantum polynomial-time algorithm which solves the discrete logarithm problem for points on elliptic curves over $GF(2^m)$. We improve over earlier algorithms by constructing an efficient circuit for multiplying elements of binary finite fields and by representing elliptic curve points using a technique based on projective coordinates. The depth of our proposed implementation, executable in the Linear Nearest Neighbor (LNN) architecture, is $O(m^2)$, which is an improvement over the previous bound of $O(m^3)$ derived assuming no architectural restrictions.


2020 ◽  
pp. 747-754
Author(s):  
Minh Nguyen Hieu ◽  
◽  
Moldovyan Alexander Andreevich ◽  
Moldovyan Nikolay Andreevich ◽  
Canh Hoang Ngoc

The current standards of the digital signature algorithms are based on computational difficulty of the discrete logarithm and factorization problems. Expected appearance in near future of the quantum computer that is able to solve in polynomial time each of the said computational puts forward the actual task of the development of the post-quantum signature algorithms that resist the attacks using the quantum computers. Recently, the signature schemes based on the hidden discrete logarithm problem set in finite non-commutative associative algebras had been proposed. The paper is devoted to a further development of this approach and introduces a new practical post-quantum signature scheme possessing small size of public key and signature. The main contribution of the paper is the developed new method for defining the hidden discrete logarithm problem that allows applying the finite commutative groups as algebraic support of the post-quantum digital signature schemes. The method uses idea of applying multipliers that mask the periodicity connected with the value of discrete logarithm of periodic functions set on the base of the public parameters of the signature scheme. The finite 4-dimensional commutative associative algebra the multiplicative group of which possesses 4-dimensional cyclicity is used as algebraic support of the developed signature scheme.


Sign in / Sign up

Export Citation Format

Share Document