Automated Reasoning Support for First-Order Ontologies

Author(s):  
Peter Baumgartner ◽  
Fabian M. Suchanek
Author(s):  
Diego Calvanese ◽  
Silvio Ghilardi ◽  
Alessandro Gianola ◽  
Marco Montali ◽  
Andrey Rivkin

AbstractUniform interpolants have been largely studied in non-classical propositional logics since the nineties; a successive research line within the automated reasoning community investigated uniform quantifier-free interpolants (sometimes referred to as “covers”) in first-order theories. This further research line is motivated by the fact that uniform interpolants offer an effective solution to tackle quantifier elimination and symbol elimination problems, which are central in model checking infinite state systems. This was first pointed out in ESOP 2008 by Gulwani and Musuvathi, and then by the authors of the present contribution in the context of recent applications to the verification of data-aware processes. In this paper, we show how covers are strictly related to model completions, a well-known topic in model theory. We also investigate the computation of covers within the Superposition Calculus, by adopting a constrained version of the calculus and by defining appropriate settings and reduction strategies. In addition, we show that computing covers is computationally tractable for the fragment of the language used when tackling the verification of data-aware processes. This observation is confirmed by analyzing the preliminary results obtained using the mcmt tool to verify relevant examples of data-aware processes. These examples can be found in the last version of the tool distribution.


10.29007/d3ls ◽  
2018 ◽  
Author(s):  
Jesse Alama

This note reports on some experiments, using a handful of standard automated reasoning tools, for exploring Steinitz-Rademacher polyhedra, which are models of a certain first-order theory of incidence structures. This theory and its models, even simple ones, presents significant, geometrically fascinating challenges for automated reasoning tools are.


10.29007/kx2m ◽  
2018 ◽  
Author(s):  
Liron Cohen ◽  
Yoni Zohar

Herbrand structures are a subclass of standard first-order structures commonly used in logic and automated reasoning due to their strong definitional character. This paper is devoted to the logics induced by them: Herbrand and semi-Herbrand logics, with and without equality. The rich expressiveness of these logics entails that there is no adequate effective proof system for them. We therefore introduce infinitary proof systems for Herbrand logics, and prove their completeness. Natural and sound finitary approximations of the infinitary systems are also presented.


Author(s):  
Fajar Haifani ◽  
Sophie Tourret ◽  
Christoph Weidenbach

AbstractWe prove the SOS strategy for first-order resolution to be refutationally complete on a clause set N and set-of-support S if and only if there exists a clause in S that occurs in a resolution refutation from $$N\cup S$$ N ∪ S . This strictly generalizes and sharpens the original completeness result requiring N to be satisfiable. The generalized SOS completeness result supports automated reasoning on a new notion of relevance aiming at capturing the support of a clause in the refutation of a clause set. A clause C is relevant for refuting a clause set N if C occurs in every refutation of N. The clause C is semi-relevant, if it occurs in some refutation, i.e., if there exists an SOS refutation with set-of-support $$S = \{C\}$$ S = { C } from $$N\setminus \{C\}$$ N \ { C } . A clause that does not occur in any refutation from N is irrelevant, i.e., it is not semi-relevant. Our new notion of relevance separates clauses in a proof that are ultimately needed from clauses that may be replaced by different clauses. In this way it provides insights towards proof explanation in refutations beyond existing notions such as that of an unsatisfiable core.


2004 ◽  
Vol 1 (3) ◽  
pp. 15-20
Author(s):  
Aleksandar Perovic ◽  
Nedeljko Stefanovic ◽  
Milos Milosevic ◽  
Dejan Ilic

Our main goal is to describe a potential usage of the interpretation method (i.e. formal representation of one first order theory into another) together with quantifier elimination procedures developed in the GIS.


Author(s):  
Koen Claessen ◽  
Ann Lillieström

AbstractWe present a number of alternative ways of handling transitive binary relations that commonly occur in first-order problems, in particular equivalence relations, total orders, and transitive relations in general. We show how such relations can be discovered syntactically in an input theory, and how they can be expressed in alternative ways. We experimentally evaluate different such ways on problems from the TPTP, using resolution-based reasoning tools as well as instance-based tools. Our conclusions are that (1) it is beneficial to consider different treatments of binary relations as a user, and that (2) reasoning tools could benefit from using a preprocessor or even built-in support for certain types of binary relations.


2019 ◽  
Vol 64 (6) ◽  
pp. 1001-1050
Author(s):  
Guillaume Burel ◽  
Guillaume Bury ◽  
Raphaël Cauderlier ◽  
David Delahaye ◽  
Pierre Halmagrand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document