1991 ◽  
pp. 365-368
Author(s):  
A. A. Zheltovodov ◽  
A. I. Maksimov ◽  
E. Kh. Shileyn ◽  
R. Dvořak ◽  
P. Šafařik


2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.



1992 ◽  
Vol 238 ◽  
pp. 1-30 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast’ transition, from a laminar two-dimensional state at Reynolds number 200 to a turbulent state at Reynolds number 400. The process has been documented in several experimental investigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the Navier—Stokes equations at representative Reynolds numbers, up to 500. A high-order time-accurate, mixed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vortex street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vortex filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vortex filaments.Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance of intermittent phenomena. It is concluded that the wake undergoes transition to turbulence following the period-doubling route.



1991 ◽  
Vol 113 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Kyuro Sasaki ◽  
Masaru Kiya

This paper describes the results of a flow visualization study which concerns three-dimensional vortex structures in a leading-edge separation bubble formed along the sides of a blunt flat plate. Dye and hydrogen bubbles were used as tracers. Reynolds number (Re), based on the plate thickness, was varied from 80 to 800. For 80 < Re < 320, the separated shear layer remains laminar up to the reattachment line without significant spanwise distortion of vortex filaments. For 320 < Re < 380, a Λ-shaped deformation of vortex filaments appears shortly downstream of the reattachment and is arranged in-phase in the downstream direction. For Re > 380, hairpin-like structures are formed and arranged in a staggered manner. The longitudinal and spanwise distances of the vortex arrangement are presented as functions of the Reynolds number.



2021 ◽  
Vol 122 (5) ◽  
pp. 423-427
Author(s):  
A. B. Borisov ◽  
D. V. Dolgikh

Abstract The Heisenberg model for an isotropic magnet is considered in this work. A substitution that reduces the corresponding equations to equations with a simpler geometric interpretation is applied. One of the solutions of the latter describes a new magnetic structure comprised of two straight intersecting vortex filaments, which change the topological charge after intersection.



Author(s):  
Zhiyuan Cao ◽  
Bo Liu ◽  
Ting Zhang

In order to explore the control mechanism of boundary layer suction on the separated flows of highly loaded diffusion cascades, a linear compressor cascade, which has separated flows on the whole span and three-dimensional separations over the suction surface/endwall corner, was investigated by tailored boundary layer suction. Three suction surface-slotted schemes and two combined suction surface/endwall-slotted schemes were designed. The original cascade and the cascade with part blade span suction were experimentally investigated on a high-subsonic cascade wind tunnel. In addition, numerical simulation was employed to study the flow fields of different suction schemes in detail. The results shows that while tailored boundary layer suction at part blade span can effectively remove the separations at the suction span, the flow fields of other spans deteriorated. The reasons are the ‘C’ shape or reverse ‘C’ shape spanwise distribution of static pressure after part blade span boundary layer suction. Suction surface boundary layer suction over the whole span can obviously eliminate the separation at the suction surface. However, because of the endwall boundary layer, suction surface boundary layer suction cannot effectively remove the corner three-dimensional separation. The separation over the whole span and the three-dimensional separation at the corner are completely eliminated by combined suction surface/endwall boundary layer suction. After combined boundary layer suction, the static pressure distribution over the blade span just like the shape of ‘C’ is good for the transport of the low-energy fluid near the endwall to the midspan.



AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1833-1842 ◽  
Author(s):  
G. A. Gerolymos ◽  
I. Vallet


Sign in / Sign up

Export Citation Format

Share Document