Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments

2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.

Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu

Vortex-induced vibrations of two elastically mounted and rigidly coupled circular cylinders in side-by-side arrangement in steady flow are investigated numerically. The vibration of the cylinders is limited to the cross-flow direction only. The three-dimensional Navier-Stokes equations are solved using the Petrov-Galerkin Finite element method and the equation of motion is solved using the fourth order Runge Kutta method. It is well known that when the gap between two stationary side-by-side cylinders is very small, the flow between the two cylinders is biased towards one cylinder and the lift force on each cylinder is significantly smaller than that of an isolated single cylinder. The aim of this study is to investigate the effect of a small gap ratio of 0.5 between the two cylinders on the lock-in regime and the amplitude of the vibration of two side-by-side cylinders in a fluid flow. Simulations are carried out for a constant mass ratio of 2, a constant Reynolds number of 1000 and a range of reduced velocities. It is found that in the lock-in range of the reduced velocity, the two cylinders vibrate about their balance position with high amplitudes. Outside the lock-in regime the flow from the gap becomes biased towards one cylinder, which is similar to that from the gap between stationary cylinders.


1990 ◽  
Vol 43 (5S) ◽  
pp. S245-S245
Author(s):  
Thomas J. Hanratty ◽  
K. Kontamaris

Observations of turbulent flow close to a wall reveal turbulent eddies which are elongated in the flow direction. This has motivated the use of a slender body assumption to simplify the Navier Stokes equations. Derivatives in the flow-direction are neglected so that three velocity components are calculated in a plane. The application of this 2 1/2D model to the viscous wall region (y+ < 40) shows that the turbulent velocity field can be represented by interaction of two eddies with spanwise wavelengths of 100 and 400 wall units. This model has been used to investigate the effect of favorable pressure gradients on a turbulent boundary-layer and to explore what determines the size of the stress producing eddies close to the wall. The accuracy of the basic physical assumptions are explored by examining resulte from a computer simulation of the three-dimensional time dependent turbulent flow in a channel. Some possible improvements are discussed, which make use of the observation that spatial derivatives in the flow direction can be related to time derivatives by using a convection velocity.


Author(s):  
W. Fister ◽  
G. Zahn ◽  
J. Tasche

Based on the Navier-Stokes-Equations, a numerical method which is a variation of the “partially-parabolic” approach used by Moore et al., was applied to calculate the three-dimensional, turbulent, viscous flow in vaneless return channels of multistage radial flow turbomachines. To avoid the high demand for computer time and storage capacity generally needed for the numerical treatment of the Navier-Stokes-Equations, the method is restricted to the calculation of flows with a predominant flow direction without separation. The procedure carries out an iteration between a marching integration of the conservation equations through the three-dimensional flow field along the mean flow direction and the solution of an elliptic pressure correction equation. So it is guaranteed that downstream influences can be considered upstream.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1998 ◽  
Vol 146 (1) ◽  
pp. 464-487 ◽  
Author(s):  
Jaw-Yen Yang ◽  
Shih-Chang Yang ◽  
Yih-Nan Chen ◽  
Chiang-An Hsu

Sign in / Sign up

Export Citation Format

Share Document