boundary layer suction
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 158 (A1) ◽  
Author(s):  
E Amromin

Design of autonomous underwater vehicles (AUV) met the opposite challenges. Their achievable route can be enhanced with drag reduction due to an increase of AUV slenderness. However, blunt short AUV have others operational advantages. The possibility to design low-drag bodies for Reynolds numbers employed by contemporary AUV (2×106<Re<107) is based on a combination of known facts. First, blunt bodies experience a drag crisis associated with laminar-turbulent transition in their boundary layers and some boundary layer suction additionally reduces their drag. Second, the transition can be delayed till much higher Re for bodies without adverse pressure gradients over their forward and medium parts. Suction on sterns of such bodies allows for the very substantial drag reduction. Several body shapes with distributed suction with extremely low slenderness (L/B<1.5) are presented. Their drag coefficients are between 0.007 and 0.02, whereas for ellipsoid of the same slenderness it exceeds 0.08.


2021 ◽  
pp. 1-25
Author(s):  
V. Mosca ◽  
S. Karpuk ◽  
A. Sudhi ◽  
C. Badrya ◽  
A. Elham

Abstract The German research Cluster of Excellence SE2A (Sustainable and Energy Efficient Aviation) is investigating different technologies to be implemented in the following decades, to achieve more efficient air transportation. This paper studies the Hybrid Laminar Flow Control (HLFC) using boundary layer suction for drag reduction, combined with other technologies for load and structural weight reduction and a novel full-electric propulsion system. A multidisciplinary design optimisation framework is presented, enabling physics-based analysis and optimisation of a fully electric aircraft wing equipped with HLFC technologies and load alleviation, and new structures and materials. The main focus is on simulation and optimisation of the boundary layer suction and its influence on wing design and optimisation. A quasi three-dimensional aerodynamic analysis is used for drag estimation of the wing. The tool executes the aerofoil analysis using XFOILSUC, which provides accurate drag estimation through boundary layer suction. The optimisation is based on a genetic algorithm for maximum take-off weight (MTOW) minimisation. The optimisation results show that the active flow control applied on the optimised geometry results in more than 45% reduction in aircraft drag coefficient, compared to the same geometry without HLFC technology. The power absorbed for the HLFC suction system implies a battery mass variation lower than 2%, considering the designed range as top-level requirement (TLR).


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5746
Author(s):  
Jonas Voigt ◽  
Jens Friedrichs

The present methodological study aims to assess boundary layer ingestion (BLI) as a promising method to improve propulsion efficiency. BLI utilizes the low momentum inflow of the wing or fuselage boundary layer for thrust generation in order to minimize the required propulsive power for a given amount of thrust for wing or fuselage-embedded engines. A multi-segment parallel compressor model (PCM) is developed to calculate the power saving from full annular BLI as occurring at a fuselage tail center-mounted aircraft engine, employing radially subdivided fan characteristics. Applying this methodology, adverse effects on the fan performance due to varying inlet distortions depending on flight operating point as well as upstream boundary layer suction can be taken into account. This marks one step onto a further segmented PCM model for general cases of BLI-induced inlet distortion and allows the evaluation of synergies between combined BLI and active laminar flow control as a drag reduction measure. This study, therefore, presents one further step towards lower fuel consumption and, hence, a lower environmental impact of future transport aircraft.


2021 ◽  
pp. 107012
Author(s):  
Petha Sethuraman Vignesh Ram ◽  
Tae Ho Kim ◽  
Heuy Dong Kim

Sign in / Sign up

Export Citation Format

Share Document